簡易檢索 / 詳目顯示

研究生: 陸海林
Lu, Hai-Lin
論文名稱: 在韋伯與其相關分配上的統計推論
Statistical Inference on the Weibull and Related Distribution
指導教授: 陳重弘
Chen, Chong-Hong
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 72
中文關鍵詞: 預測區間韋伯分配加權最小平方估計量次序統計量
外文關鍵詞: ordered statistics, weighted least squared method, prediction interval, Weibull distribution
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在存活與可靠性研究中最簡單且最重要的分配為指數分配.而且指數分配在壽命研究中所扮演的角色等同於常態分配在其他統計領域的重要性.它最著名的性質為與以往的記憶無關(lack of memory),也就是物體或動物過去的壽命並不有影響未來存活的機率;亦即指數分配具有失效率為一常數的特徵.然而對許多存活的資料來說此特性是不合理的.由此一些指數的擴充分配如 Weibull, Extreme-value, Gompertz, Pareto, Rayleigh等分配它們的失效率是變動的(可能為時間的一個函數 )而非一定數.因此這些分配可以更寬廣的運用在壽命與可靠度的問題上,並且可以利用適當的數學轉換將這些分配轉換成指數分配的形式,此仍可以借用指數分配的性質來簡化問題以及估計參數.通常這些分配的參數估計往往採用最大概似估計量(Maximum likelihood estimator: MLE), 動差估計量(Moment estimator: ME),修正的動差估計量(Modified moment estimator: MME),貝氏估計量(Bayesian estimator),最小平方法估計量(Least squares estimator: LSE).動差估計量在計算方面是很容易的,但是在許多情況下常常是並不有效.最大概似估計量符合一致性且漸近有效,然而往往對一些設限資料在計算時較複雜且不易解.本文提供兩個簡易的方法來估計這些參數,首先借用指數的性質,提供這些分配中參數的一些恰當聯合信賴區域與信賴區間, 其次提供加權最小平方法來估計這些參數.我們採用次序統計量與穩定的變異數的轉換之觀念建立新的加權最小平方法.並在適當的評估下,新的加權最小平方法的估計量與最大概似估計量並沒有顯著的差異.但是,新的加權最小平方法提供易瞭解的觀念,在計算上直接並簡單.另外,我們提供與參數無關的統計量(pivotal quantity)在多重設限資料下,指數分配中未觀察到的資料的預測區間.這在實際上,對可靠性和壽命實驗中的整個生存期間與 n 個元件系統中 j 個元件損壞的時間,均可以用所建議的與參數無關的統計量(pivotal quantity)來預估的.

      The simplest and most important distribution in survival studies is the exponential. The exponential distribution plays a role in lifetime studies analogous to that of the normal distribution in other areas of statistics. It is famous for its unique "lack of memory", high requires that the age of the animals or individual does not affect future survival. The exponential distribution has the character of constant hazard rate, however, that it cannot be reasonable and inadequate to describe many survival data set. Some distributions such as Weibull, Extreme-value,Weibull, Gompertz, Pareto, Rayleigh etc are extensions of the exponential distribution, their hazard rate vary broadly. Hence, these distributions can be more widely used in life-testing and reliability problem.All these distributions are extended by appropriately mathematical transformations from the exponential distribution. In the statistical analysis, the parameters of these distributions may be estimated by MLE(Maximum likelihood estimator), AMLE(asymptotic Maximum likelihood estimator),ME(Moment estimator), MME(Modified moment), Bayesian estimator, and LSE(Least squares estimator) etc. The Me are usually easy to calculate, but they are generally inefficient. The MLE are always consistent and asymptotically efficient, however,they are often intractable and complicative for some censored data or truncated data. Bayesian estimators have the property of robustness, however, they need the prior distribution and is complicated in calculation. In this thesis, we propose two simple methods that they can be easy to estimate for these parameters. At first, some exact joint confidence regions and confidence intervals for parameters are derived by using some basic properties of exponential distribution. Secondly, we provide a weighted least squares method to estimate these parameters.We adopt the notion of order statistics and variance stabilizing transforms to set up the weighted least squares method(WLS). In some simulation study, the WLS method and the maximum likelihood estimate do not differ significantly in terms of precision and bias for moderate and large sample size. Finally, we also provide a suitable pivotal quantity to present the prediction interval of the jth future ordered-observation in a sample of size n from one-parameter exponential distribution where a multiple type II censored sample. As applications, the total duration time in a life test and the failure time of a j-out-of-n system may be predicted by some pivotal quantities.

    中文摘要 ----4 Abstract ----5 謝誌 ----7 0. Introduction ----8 1. Some exact confidence intervals and joint confidence regions ----11  1.1 Method ----11  1.2 Applications ----14    1.2.1 Weibull distribution ----14    1.2.2 Extreme-Value distribution ----16    1.2.3 Gompertz distribution ----18  1.3 Illustration example and simulation study--20  1.4 Discussion ----22 2. Weighted least squares estimation ----23  2.1 Weighted least squares method for the Weibull distribution ----23  2.2 Weighted least squares method for the Linear-exponential distribution ----26    2.2.1 Method ----27    2.2.2 A simulated study ----30    2.2.3 Asymptotic distribution ----36    2.2.4 Conclusion ----38 3. Prediction intervals based on type II censored samples ----40  3.1 Introduction ----40  3.2 Prediction intervals ----42  3.3 Approximate prediction intervals ----44    3.3.1 A simple approximate prediction interval-44    3.3.2 Approximate prediction interval based on-4BLUE ----45    3.3.3 Approximation prediction interval based on AML ----46  3.4 Calculation and algorithm ----47  3.5 An illustrated example ----48 4. Perspectives ----51  Bibliography ----52  Appendix ----61

    Aigner, D. J. and Goldberger, A. S. (1970 Estimation of Pareto's law from grouped observations, Journal of the American Statistical Association, 65, 712-721.

    Aroian, L. A. (1965) Some properties of the conditional Weibull distribution, Transactions of the Nineteenth Technical Conference of the American Society for Quality Control, 361-368.

    Bain, L. J. (1974) Analysis for the linear failure-rate life-testing distribution, Technometrics, 16, 551-559.

    Bain, L. J. and Engelhardt, M. (1991) Statistical Analysis of Reliability and Life-testing Models}(Second edition),Marcel Dekker, New York.

    Balakrishnan, N. (1989) Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Trans. on Reliab., 38, 355-357.

    Balakrishnan, N. and Basu, A.P. (1995) The Exponential Distribution-Theory, Methods and Applications, Gordon and Breach Publishers, London.

    Balakrishnan, N. and Cohen, A. C. (1991) Order Statistics and Inference: Estimation Methods, Academic Press, Inc., New York.

    Balakrishnan, N. and Mailk, H. J. (1986) Order statistics from the linear-exponential distribution Part I. Increasing hazard rate case,t Commun. Statist. Theory Methods, 15, 179-203.

    Balakrishnan, N. and Varadan, J. (1990 Approximate maximum likelihood estimation of the location and scale parameter of the extreme value distribution based on complete and censored samples, IEEE Trans. on Reliab., 39, 412-419.

    Bergman, B. (1986)Estimation of Weibull parameters using a weight function, Journal of Materials Science Letters , 5, 611-614.

    Bedrick, E. J., Christensen, R. and Johnson, W. (1996) Bayesian accelerated failure time analysis with application to veterinary epidemiology, Statist. Med., 19,221-237.

    Bickel, P. J. and Doksum, K. A. (2001) Mathematical Statistics - Basic Ideas And Selected Topics , Vol. I,Prentice-Hall, Inc., San Francisco.

    Chen, Z. (1997) Parameter estimation of the Gompertz population, Biometrical Journal, 33, 117-124.

    Chen, Z. (1998) Joint parameter estimation of the Weibull population, Journal of Statistical Planning and Inference, 66, 113-120.

    Chernoff, H., Gastwirth, J. L. and Johns, M. V. (1967) Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation, Ann. Math. Statist, 28, 52-72.

    Cohen, A. C. (1991) Truncated and censored samples: Theory and Applications, Marcel Dekker, New York.

    Cohen, A. C. and Whitten, B. J. (1982) Modified maximum likelihood and modified moment estimations for the three-parameter Weibull distribution, Commun. statist.-Theory and method, 11, 2631-2656.

    Cohen, A. C. and Whitten, B. J. (1988) Parameter estimation in Reliability and life span models, Marcel Dekker, New York.

    Cohen, A. C., Whitten, B. J. and Ding, Y. (1984)Modified moment estimations for the three-parameter Weibull distribution, Journal of Quality Technology, 16, 159-167.

    D'Agostino, R. B. and Stephens, M. A.(1986)Goodness-of-fit Techniques,Marcel Dekker, Inc, New York.

    Drapella, A. and Kosznik, S. (1999)An alternative rule for placement of empirical points on Weibull probability paper, Quality and Reliability Engineering International, 15, 57-59.

    Dubey, S. D. (1965) Asymptotic properties of several estimators of Weibull parameters, Technometrics, 7, 423-434.

    Dubey, S. D. (1967) Normal and Weibull distribution, Naval Research Logistics Quarterly, 14, 261-267.

    Faucher, B. and Tyson, W.R.(1988)On the determination of Weibull parameters, Journal of Materials Science Letters, 7, 1199-1203.

    Fisk, P.R. (1966) The graduation of income distributions, it Econometrics, 29, 171-185.

    Garg, M. L., Rao, B. R., and Redmond, C. K., (1970) Maximum likelihood estimationof the parameters of the

    Gompertz survival function,Journal of the Royal Statistical Society C, 19, 152-159.

    Geisser, S (1984) Prediction Pareto and exponential observable, Can. J. Statist., 12, 143-152.

    Gordon, N. H. (1990)Maximum Likelihood estimation for mixtures of two Gompertz distributions when censoring occurs, Communications in Statistics B: Simulation and Computation, 19, 733-747.

    Hagstroem, K. G. (1960) Remarks on Pareto distributions, Skandinavisk Aktuarietidskrift, 43, 59-71.

    Hann, C. T. and Beer, C. E. (1967) Determination of maximum likelihood estimators for the three parameter

    Weibull distribution, Iowa State Journal of Science, 42, 37-42.

    Harter, H. L. (1970) Order statistics and Their Use in Testing and Estimation,2, Government Printing Office, Washington, DC.

    Hossain, A. and Howlader, H. A. (1996) Unweighted least squared estimation of Weibull parameters, Journal of Statistical computer Simulation, 54, 265-271.

    Hung, W. L. (2001) Weight least-squares estimation of the sharp parameter of the Weibull distribution, Quality and Reliability Engineering International, 17, 467-469.

    Johnson, N. L., Kotz, S. and Balakrishnan, N.(1994) Continuous Univariate Distributions-1, Second Edition, John Wiley Sons, New York.

    Kaminsky, K.S. and Nelson, P. I. (1974) Prediction intervals for the exponential distribution using subsets of the data, Technometrics, 16, 57-59.

    Kececioglu, D. (1993) Reliability and Life Testing Handbook, PTR Prentice Hall, New Jersey.

    King, M., Bailey, D.M. Gibson, D. G. Pitha, J. V., and MCay, P. B. (1979)

    Incidence and growth of mammary tumors induced by ,12-Dimethylbenz antheacene as related to the dietary content of fat and antioxidant, Journal of the National Cancer Institute, 63, 656-664.

    Langlois, R. (1991)Estimation of Weibull Parameters, Journal of materials science letters, 10(18), 1049-1051.

    Lawless, J. F. (1971)A prediction problem concerning samples from the exponential distribution, with application to life testing, Technometrics, 13, 725-730.

    Lawless, J. F. (1978)Confidence interval estimators for the Weibull and extreme-value distributions( with discussion), Technometrics, 20, 355-368.

    Lawless, J. F. (1980)Inference in the generalized gamma and log-gamma distributions,Technometrics, 22, 409-419.

    Lawless, J. F. (1982) Statistical Models and Methods for Lifetime Data, Wiley, New York.

    Lee, E. T. (1980) Statistical Methods for survival data analysis,Lifetime learning publication, Belmont.

    Liang-Yuh, O., and Shuo-Jye, W. (1994) Prediction intervals for an ordered observation from a Pareto distribution,IEEE Trans. Reliab., 35, 106-110.

    Lu, H. L., Chen, C. H., and Wu, J. W. (2001) Joint estimation for the parameters of the extreme value distributions, Journal of the Chinese Statistical Associated, 39(3)}, 289-304.

    Lu, H. L., Chen, C. H., and Wu, J. W. (2002)Confidence region estimation for the parameters of the extreme value distributions under different censored data, Journal of National Cheng-Kung University, 37, 1-12.

    Lu, H. L., Chen, C. H., and Wu, J. W. (2003) A note on weighted least-squares estimation of the shape parameter of the Weibull distribution, Quality and Reliability Engineering International,(To appear).

    Malik, H. J. (1970)Estimation of the parameter of the Pareto distribution, Metrika, 15, 126-132.

    Mandelbrot, B. (1960)The Pareto-Levy law and the distribution of income, International Economic Review, 1, 79-106.

    Mandelbrot, B. (1963)The variation of certain speculate prices, Journal of Business, University of Chicago, 36, 394-419.

    Mandelbrot, B. (1967)hspace*{0.15cm} The variation of some other speculatie prices, Journal of Business,University of Chicago, 40, 393-413.

    Mann, N. R. and Grubbs, F. E. (1974) Chi-square approximation for exponential parameters, prediction intervals and beta percentiles, Journal of the American Statistical Association, 69, 654-661.

    Mazzuchi, T. A., Soyer, R. and Vopatek, A. (1997) Linear Bayesian inference for accelerated Weibull Model. Lifetime Data Analysis, 3, 63-75.

    McCool, J. I. (1966) Inference on Weibull percentiles and shape parameter from maximum likelihood estimates,SFK Industries Research Laboratory Report No. AL68PO23, King of Prussia, PA.

    Menon, M. V. (1963)Estimation of the shape and scale parameters of the Weibull distribution, Technometrics, 5, 175-182.

    Mihram, G. A. (1977) Weibull shape parameter:Estimation by moments, ASQC Technical Conference Transactions, 315-322.

    Miller, D. W. (1966)Degree of normality of maximum likelihood estimates of the shape parameter of the Weibull failure distribution, Unpublished thesis, St. Louis, MO, Washington University.

    Newby, M. J. (1980)The properties of moment estimators for the Weibull distribution based on the sample coefficient of variation, Technometrics, 22, 187-194.

    Newby, M. J. (1984)Properties of moment estimators for the 3-parameter Weibull distribution, IEEE Transactions on Reliability, 33, 192-195.

    Ord, J. K. (1975)Statistical models for personal income distribution, In Statistical Distributions in Scientific Work, 2, edited by Patil, G. P.,Kotz, S. and Ord, J. K. 151-158, Reidel, Dordrecht.

    Proschan, F. (1963)Theoretical explanation of observed decreasing failure rate, Technometrics, 5, 375-383.

    Quandt, R. E.(1966)Old and new methods of estimation and the Pareto distribution. Metrika, 10, 55-82.

    Sen, A. and Bhattacharyya, G. K. (1995) Inference procedures for the linear failure rate model, Journal of Statistical Planning and Inference, 46, 59-76.

    Shoukri, M.M. and Tracy, D. S. (1987)Bayesian statistical inference in the Paretian law, J. Statist. Comput. Simul., 27, 65-77.

    Smith, R. L. (1985)Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72, 67-90.

    Soman, K. P. and Misra, K. B. (1994)Bayesian sequential estimation of two parameters of a Weibull distribution,Microelectron Reliability, 43(3), 509-519,Elsevier Science Ltd.

    Steindl, J.(1965) Random Processes and the Growth of Firms, Hafner, New York.

    Upadhyay, S. K., Singh, U. and Shastri, V. (1996)Estimation of exponential parameters under multiply type II censoring, Commun. Stat. Simul., 25(3), 801-815.

    Weibull, W. (1939)A statistical theory of the strength of materials, Ingeniors Vetenskaps Akakemien Handlingar, 15, 293-297.

    Weibull, W. (1967)Estimation of distribution parameters by a combination of the best linear order statistics and maximum likelihood, Air Force Materials Laboratory Technical Report AFML-TR-67-102,Wright-Patterson Air Force Base, Dayton, OH.

    Wu, J. W., Lu, H. L., Chen, C. H., and Yang, C H. (2003)A note on the prediction intervals for future order observation from a Pareto distribution. it Quality and Quantity(To appear)

    下載圖示
    2003-01-20公開
    QR CODE