| 研究生: |
徐榮忠 Hsu, Jung-chung |
|---|---|
| 論文名稱: |
具奈米結構之電漿子生物感測器 Plasmonic Biosensors with Nanostructures |
| 指導教授: |
陳顯禎
Chen, Shean-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 生物感測器 、電漿子 、奈米狹縫陣列 、耦合波導共振 |
| 外文關鍵詞: | plasmonic, coupled-waveguide resonance, biosensor, nanoslit array |
| 相關次數: | 點閱:87 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要提出兩種具不同奈米結構的電漿子生物感測器,這兩種感測器的特色都是利用光由玻璃基板面入射以激發金屬膜層和待測物界面的表面電漿子。
第一種為具有相位差次波長光柵之耦合波導電漿子生物感測器。引入了次波長光柵及耦合波導共振效應的概念,不但簡化了光學量測的複雜度,也多了使量測解析度增加的優點,另外,結合180度相位差的次波長光柵,能使光由基板入射時亦能激發金屬膜層與待測物界面之表面電漿子的能力,利用此一新穎概念下所製作出的生物感測器將可以改善原本光由待測面入射時的訊號擾動情形,並且其靈敏度及量測的解析度皆不亞於先前有人提出的耦合波導表面電漿子共振(coupled waveguide-surface plasmon resonance,CWSPR)生物感測器。
第二種則是具有金屬奈米週期陣列的電漿子生物感測器。利用因電漿子效應所造成之異常穿隧現象,有相關研究利用此特性製作了具有奈米孔洞陣列及奈米狹縫陣列的電漿子生物感測器,本研究將針對這兩種陣列形式的差異做一說明,並且就實際於生物感測上的實用性,提出這兩種機制的缺點,藉由了解其物理機制,有助於跳脫異常穿隧現象,而以感測器的角度出發,提出一種新的設計概念,藉由收反射光的機制及減少金屬膜厚兩個方向來改善其實用性上的缺點。
研究中所提出的具有金屬奈米週期陣列的電漿子生物感測器,不但延續了使光具有由基板入射亦能激發金屬膜層與待測物界面之表面電漿子的能力外,更可發現其感測的靈敏度及量測的解析度都比前述所提的生物感測器要來得好,因此認為此一感測器應是十分適合被應用在表面感測的領域。
This study has proposed two kinds of plasmonic biosensors with different nanostructures. Both of them have a common advanced feature: the surface plasmons can be excited in the upper interface of the metal layer by the light incident through the glass substrate.
The first one is a coupled waveguide plasmonic biosensors with phase difference subwavelength gratings. To integrate subwavelength gratings with waveguide layer, the plasmonic biosensor just needs a compact optical metrology system and can improve the measuring resolution. Having 180o phase difference gratings, the surface plasmons are excited in the upper interface of the metal layer by the light incident through the substrate. The biosensor ignores the problem induced by the fluctuation of buffer solution when the light is incident from the buffer solution. The detection sensitivity and measuring resolution of the biosensor are verified and compared with other plasmonic biosensors with subwavelength gratings.
The other is a plasmonic biosensor with perforated nanostructures. Some researches about the extraordinary optical transmission are based on plasmonic effects. However, this study will illustrate and compare the differences between them, and also point out the drawbacks for biosensors. To understand the mechanism of surface plasmons and apply it to biosensors, the new plasmonic biosensor with nanostructures is proposed. To measure the reflected light spectrum and decrease the thickness of the metal layer, the biosensor provides an optimum detection limit in reality.
The proposed two plasmonic biosensors not only can provide the surface plasmonic effects in the upper interface of the metal layer even the incident light is from the buffer solution, but also achieve the high detection sensitivity and measurement resolution. They will be benefit to biosensing applications.
1.R. M. T. de Wildt, C. R. Mundy, B. D. Gorick, and I. M.
Tomlinson, “Antibody arrays for high-throughput
screening of antibody-antigen interactions,” Nat.
Biotechnol. 18, 989-994 (2000).
2.G. MacBeath and S. L. Schreiber, “Printing proteins as
microarrays for high-throughput function
determination,” Science 289, 1760-1763 (2000).
3.B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein
microarrays for highly parallel detection and
quantitation of specific proteins and antibodies in
complex solutions,” Genome Biol. 2, research0004, 1-13
(2001).
4.M. A. Cooper, “Optical biosensors in drug discovery,”
Nat. Rev. Drug Discov. 1, 515-528 (2002).
5.J. Homola and S. S. Yee, “Surface plasmon resonance
sensors: review,” Sens. Actuat. B 54, 3-15 (1999).
6.R. L. Rich and D. G. Myszka, “Advances in surface
plasmon resonance biosensor analysis,” Curr. Opin.
Biotechnol. 11, 54-61 (2000).
7.S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee,
“Enhancement of the resolution of surface plasmon
resonance biosensors by control of the size and
distribution of nanoparticles,” Opt. Lett. 29, 1390-
1392 (2004).
8.F. C. Chien, C. Y. Lin, J. N. Yih, K. L. Lee, C. W.
Chang, P. K. Wei, C. C. Sun, and S. J. Chen, “Coupled
waveguide- surface plasmon resonance biosensor with
subwavelength grating,” Biosens. Bioelectron. 22, 2737-
2742 (2007).
9.張哲維,具次波長光柵之電漿子生物感測器,成功大學光電所,
九十五學年碩士論文。
10.C. Genet and T. W. Ebbesen, “Light in tiny holes,”
Nature 445, 39-46 (2007).
11.P. K. Wei, H. L. Chou, and W. S. Fann, “Optical near
field in nano metallic slits,” Opt. Express 10, 1418-
1424 (2002).
12.R. W. Wood, “On a remarkable case of uneven
distribution of light in a diffraction grating
spectrum,” Phil. Mag. 4, 396-408 (1902).
13.J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon
resonance sensors based on diffraction gratings and
prism couplers: sensitivity comparison,” Sens. Actuat.
B. 54, 16-24 (1999).
14.J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C.
Chien, K. L. Lee, P. K. Wei, and S. J. Chen, “Optical
waveguide biosensors constructed with sub-wavelength
gratings,” Appl. Opt. 45, 1938-1942 (2006).
15.K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz,
“Label-free highly sensitive detection of (small)
molecules by wavelength interrogation of integrated
optical chips,” Sens. Actuat. B 91, 241-251 (2003).
16.R. E. Kunz and J. Duebendorfer, “Miniature integrated
optical wavelength analyzer chip,” Opt. Lett. 20, 2300- 2303 (1995).
17.I. Hooper and J. Sambles, “Surface plasmon polaritons
on thin-slab metal gratings,” Physical Review B 67,
235404 (2003).
18.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and
P. A. Wo, “Extraodinary optical transmission through
sub-wavelength hole arrays,” Nature 391, 667-669
(1998).
19.H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen,
and H. J. Lezec, “Surface plasmons enhance optical
transmission through subwavelength holes,” Phys. Rev.
B 58, 6779-6782 (1998).
20.H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L.
Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen,
“Beaming light from a subwavelength aperture,” Science
107, 820-822 (2002).
21.A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh,
“Surface plasmon sensor based on the enhanced light
transmission through arrays of nanoholes in gold
films,” Langmuir 20, 4813-4815 (2004).
22.K. L. Lee, W. S. Wang, and P. K. Wei, “Sensitive
biosensor array using surface plasmon resonance on
metallic nanoslits,” J. Biomedical Optics 12, 044023
(2007).
23.H. Raether, Surface Plasmons on Smooth and Rough
Surfaces and on Gratings, Berlin: Springer-Verlag
(1988).
24.K. Welford, “The method of attenuated total
reflection,” IOP Short Meeting Series 9, 25-78 (1987).
25.G. I. Stegeman, R. F. Wallis, and A. A. Maradudin,
“Excitation of surface polaritons by end-fire
coupling,” Opt. Lett. 8, 386-388 (1983).
26.Z. Sun and D. Zeng, “Coupling of surface plasmon waves
in metal/dielectric gap waveguides and single interface
waveguides,” J. Opt. Soc. Am. B 24, 2883-2887 (2007).
27.R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-
Shrzek, “Experimental observation of plasmon polariton
waves supported by a thin metal film of finite width,”
Opt. Lett. 25, 844-846 (2000).
28.H. A. Bethe, “Theory of diffraction by small holes,”
Phys. Rev. 66, 163-182 (1944).
29.J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry,
“Transmission Resonances on Metallic Gratings with Very
Narrow Slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
30.D. K. Cheng, Fundamentals of Engineering
Electromagnetics, Addison-Wesley (1993).
31.H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G.
Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D.
Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit
transmission: Young’s experiment revisited,” Phys.
Rev. Lett. 94, 053901 (2005).
32.K. M. Chae, H. H. Lee, S. Y. Yim, and S. H. Park,
“Evolution of electromagnetic interference through nano-
metallic double-slit,” Opt. Express 12, 2870-2879
(2004).
33.易政男,藉由奈米電漿子偵測信號強化之表面電漿共振與表面強
化拉曼散射生物感測器,中央大學光電所,九十四學年博士論
文。
34.W. P. Chen and J. M. Chen, “Use of surface plasma
waves for determination of the thickness and optical
constants of thin metallic films,” J. Opt. Soc. Am.
71, 189-191 (1981).
35.M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W.
Hnsch, “Scanning plasmon near-field microscope,”
Phys. Rev. Lett. 68, 476-479 (1992).
36.W. Srituravanich, N. Fang, S. Durant, M. Ambati, C.
Sun, and X. Zhang, “Sub-100 nm lithography using
ultrashort wavelength of surface plasmons,” J. Vacuum
Science & Tech. B 22, 3475-3478 (2004).
37.J. Tominoga, J. Kim, H. Fuji, D. Bchel, T. Kikukawa,
L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y.
Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-
Resolution Near-Field Structure and Signal Enhancement
by Surface Plasmons,” Jpn. J. Appl. Phys. 40, 1831-
1834 (2001).
38.S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B.
Koel, and A. Requicha, “Local detection of
electromagnetic energy transport below the diffraction
limit in metal nanoparticle plasmon waveguides,” Nat.
Mater. 2, 229-232 (2003).
39.M. G. Moharam and T. K. Gaylord, “Rigorous coupled-
wave analysis of planar grating diffraction,” J. Opt.
Soc. Am. 71, 811-818, (1981).
40.K. S. Kunz and R. J. Luebbers, The Finite Difference
Time Domain Method for Electromagnetics, CRC Press
(1993).
41.U. Schrter and D. Heitmann, “Grating couplers for
surface plasmons excited on thin metal films in the
Kretschmann-Raether configurtion,” Physical Review B
60, 4992-4999 (1999).
42.龍文安,半導體奈米技術,五南 (2006).
43.Y. S. Jung, Zhijun Sun, Jeff Wuenschell, and H. K. Kim,
“High-sensitivity surface plasmon resonance
spectroscopy based on a metal nanoslit array,” Appl.
Phys. Lett. 88, 243105 (2006).
44.簡汎清,奈米電漿子感測技術於生物分子之功能分析,中央大學
光電科學研究所,九十五學年博士論文。