簡易檢索 / 詳目顯示

研究生: 沈運宣
Shen, Yun-Hsuan
論文名稱: 藉由嵌入二維阿基米德晶格之光子晶體提升有機發光二極體之光透射效率
Enhanced Light Extraction Efficiency from Organic Light‐Emitting Diodes by Inserting 2D Photonic Crystals with Archimedean Tilings
指導教授: 王清正
Wang, Ching-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 65
中文關鍵詞: 光子晶體有機發光二極體輻射模態阿基米德晶格
外文關鍵詞: photonic crystal, organic light-emitting diode, radiation mode, Archimedean lattice
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體(OLED)因為重量輕、厚度薄、具有更寬的視角和低操作電壓等優點而被視為次世代顯示器中關鍵的角色。近年來積極發展其潛在應用,如:平面顯示器和可彎曲螢幕。典型的OLED是將有機發光材料夾在陰陽兩極中間層狀堆疊在基板上。由於陽極層為高折射率介質(n=1.8),發光層發出的光大部分都因其層狀界面產生之全內反射(TIR)而被限制在結構內,所以傳統的OLED其發光效益仍有限且低至20%。
    光子晶體(photonic crystal)是由不同折射率之材料週期性排列而成的多維人造結構。經由適度的設計可具備控制光於其內傳遞的效果。光子晶體具有傳導模態和輻射模態,有別於傳導模態,若光波落在輻射模態(位於light cone之上的模態),將無法在光子晶體內部傳導,會輻射到晶體外部(external mode)。利用此一性質,將光子晶體置入多層的發光結構中,例如:LED、OLED,可提升光的透射效率。
    本文使用12重對稱阿基米德A7晶格之光子晶體嵌入玻璃基板中提升OLED的發光效率。此SiO2/SiNx 材料組成的二維光子晶體層可使光從有層/ITO層之高折射率介質產生的波導模態轉變為輻射模態。我們透過平面波展開法(PWEM)來設計光子晶體的參數並利用三維時域有限差分法(3D FDTD)加以模擬光子晶體OLED之透光效益。
    模擬結果可分為兩部分,從電場圖和透射效率得知,利用阿基米德A7晶格,因其具有較密集之輻射模態和高對稱性,可減少光侷限在發光層之波導模態,有效提升光從發光層透射至玻璃層;透過遠場投影圖分析,針對不同視角之電場強度積分和不同蝕刻深度之增強效益比較,可知本設計相較於傳統光子晶體OLED的發光強度更高且集中並能降低製程所需的時間和成本。

    Organic light-emitting diode(OLED) is considered as a critical component for next generation displays due to its light weight, thin thickness, wider viewing angles and low operational voltage. The OLED displays have been actively investigated in recent years on account of their potential applications in flat panel displays and flexible displays. A typical OLED is composed of a layer of organic materials situated between the anode and cathode, all deposited on a substrate. However, because of the high refractive index of the anode ITO layer(n=1.8), the light extraction efficiency of a conventional OLED is still limited to be as low as 20%, which is one of the most important issues for practical device applications. The low efficiency arises from that most of the emitted light is confined inside the device due to the total internal reflection(TIR) at the interfaces of the layers.
    Photonic crystals(PhCs) are artificial multi-dimensional periodic structures with periodic modulation of the refractive index. Suitably designed, PhCs have the ability to control the propagation of light. The PhCs have both guide and radiation modes. The guide mode allows the lights to transmit internally. In contrast, the radiation mode refers to the phenomena in which the lights are not guided to transmit internally. Set the incident light in the radiation modes, then it would not propagate along the wave guide internally. Instead, the lights radiate and escape from the wave guide. By taking advantages of this feature, we can therefore enhance the efficiency of light extraction by embedding photonic crystals in the multiple structures, such as LED and OLED.
    To improve light extraction from organic light-emitting diodes(OLED), we present a photonic crystal with 12-fold symmetry Archimedean A7 lattice into the glass substrate of an OLED. The two-dimensional SiO2/SiNx photonic crystal layer converts the guided waves in the high-refractive-index indium-tin-oxide(ITO)/organic layers into radiation waves. By using the plane wave expansion method(PWEM), we design the structural parameters of the photonic crystal pattern and the finite-difference time-domain(FDTD) method to simulate the light extraction from the PhC-OLED.
    There are two parts of the simulation results, from the electric field and transmission, we can observe the lights transmit into glass layer form the organic emitting layer because of the Archimedean A7 lattice with higher order symmetry and density of states in the radiation mode; we compare the enhancement of light extractions by integrating the far-field projection over the viewing angles and different etching depths, it follows that this design would contribute to not only making OLED lights brighter and more concentrated but also consuming less process time and cost in comparison with conventional PhC-OLED.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號 XI 第一章 緒論 1 1-1 前言 1 1-2 研究背景 1 1-2-1 光子晶體簡介 1 1-2-2 阿基米德晶格簡介 3 1-2-3 有機發光二極體簡介 4 1-3 文獻回顧 6 1-4 研究目的 7 第二章 數值方法 8 2-1 前言 8 2-2 平面波展開法 8 2-2-1 倒晶格(Reciprocal lattice) 8 2-2-2 布拉克理論(Bloch Theorem) 9 2-2-3 平面波展開法 10 2-2-4 正方晶格(square lattice) 14 2-2-5 三角晶格(Triangular lattice) 14 2-3 時域有限差分法 21 2-3-1 時域有限差分法推導 21 2-3-2 完美匹配吸收層 24 第三章 光子晶體 OLED 的結構設計與模擬 30 3-1有機發光二極體 30 3-1-1 有機發光二極體發展簡史及其優點 30 3-1-2 OLED 基本構造模擬 30 3-1-3 有機發光材料 31 3-1-4 發光層光源模擬 31 3-2 光子晶體 37 3-2-1 二維光子晶體光透射原理 37 3-2-2 阿基米德晶格 38 3-2-3 光子晶體參數選擇 38 第四章 阿基米德光子晶體應用於 OLED 結構提升透光效率 48 4-1 電場圖與透射率分析 48 4-2 遠場投影分析 49 4-3 加入光子晶體之增強效益分析 50 第五章 結論與未來展望 61 5-1 結論 61 5-2 未來展望 61 參考文獻 62

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, Vol.58, No. 20, pp.2059-2062 (1987).
    [2] S. John, “Strong ocalization of photons in certain disordered dielectric superlattices,” Physical Review Letters, Vol.58, No.20, pp.2486-2489 (1987).
    [3] J. D. Jannopolous, R. D. Meade and J. N. Winn, “Photonic Crystal,” (Princeton U. Press, Princeton, N.J. (1995).
    [4] Branko Grünbaum and G. C. Shephard, “Tilings and Patterns,” New York: W. H. Freeman (1987).
    [5] Sylvain David, Alexei Chelnokov, and Jean-Michel Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings,” Optics Letters, Vol.25, Issue 14, pp.1001-1003 (2000).
    [6] Y. J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. Rag Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779 (2003).
    [7] Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “high Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals,” Physical Review Letters, vol.79, No.17, pp.3294-3297 (1997).
    [8] N. K. Patel, S. Cina and J. H. Burroughes, “High-Efficiency Organic Light-Emitting Diodes,” IEEE Journal on Selected Topics in Quantum Electronics, Vol.8, No.2 (2002).
    [9] Masatoshi Kitamura, Satoshi Iwamoto and Yasuhiko Arakawa, “Enhanced Luminance Efficiency of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys.44, pp.2844-2848 (2005).
    [10] Hua-Kuang Liu, Han-Tsung Hsueh, and Chen Chang, “Using holography to increase the light output efficiency of an organic light-emitting diode–angular, wavelength, and near-field effects,” Opt. Eng.44(11), 111306 (2005).
    [11] Rik Harbers, Patric Strasser, Daniele Caimi, Rainer F. Mahrt and Nikolaj Moll, “Enhanced feedback in organic photonic-crystal lasers,” Applied Physics Letters; Vol.87 Issue 15, p151121 (2005).
    [12] Yong-Jae Lee, Se-Heon Kim, Joon Huh, Guk-Hyun Kim, and Yong-Hee Lee, “A high-extraction-efficiency nanopatterned organic light-emitting diode,”Applied Physics Letters Volume 82, No.21 (2003).
    [13] Young Rag Do, Yoon-Chang Kim, Young-Woo Song, and Yong-Hee Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96, 7629 (2004)
    [14] Yong-Jae Lee, Se-Heon Kim, Guk-Hyun Kim, and Yong-Hee Lee, “Far-field radiation of photonic crystal organiclight-emitting diode,” Optics Express 5864 Vol.13, No.15 (2005).
    [15] Yoon-Chang Kim, Sang-Hwan Cho, Young-Woo Song, Yong-Jae Lee and Yong-Hee Lee, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502 (2006).
    [16] Rong-jin Yan, Qing-kang Wang, “High Light-Extraction-Efficiency OLED based on photonic crystal slab structures with taper unit cells,” Optoelectronics Letters, Vol.2, Issue 2, pp 86-90 (2006).
    [17] Kuniaki Ishihara, Masayuki Fujita, Ippei Matsubara, Takashi Asano, Susumu Noda, Hiroshi Ohata, Akira Hirasawa, Hiroshi Nakada, and Noriyuki Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl.Phys. Lett. 90, 111114 (2007).
    [18] Aurelien David, Tetsuo Fujii, Elison Matioli, Rajat Sharma, Shuji Nakamura, Steven P. DenBaars, Claude Weisbuch, and Henri Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett. 88, 073510 (2006).
    [19] Rongjin Yan and Qingkang Wang, “Enhancement of light extraction efficiency in OLED with two-dimensional photonic crystal slabs,” Chin. Opt. Lett. (2006).
    [20] Jia-Qi Li, Wei-Qing Yang, Yan-Ting Zhang, Qian-Jin Wang, Cheng-Ping Huang, and Yong-Yuan Zhu, “Optical transmission through gold film with Archimedean-like subwavelength hole arrays,” J. Appl. Phys. 101, 073505 (2007).
    [21] Sakoda, Kazuaki, “Optical Properties of Photonic Crystals,” Springer Series in Optical Sciences, Vol. 80 (2001).
    [22] Kane S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas and Propagation, AP-14, 802-807 (1966).
    [23] J. B. Berenger, “A Perfectly Matched Layer for Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185-200 (1994).
    [24] Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagation. 43, 1460-1463 (1995).
    [25] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propagation. 44, 1630-1639 (1996).
    [26] Allen Taflove and Susan C. Hagness, “Computational Electrodynamics: The Finite-Difference Time- Domain Method,” Norwood, MA: Artech House (1995).
    [27] Christopher Wiesmann, Krister Bergenek, Norbert Linder, and Ulrich T. Schwarz, “Photonic crystal LEDs–designing light extraction,” Laser & Photon. Rev.3, No. 3, 262–286 (2009).
    [28] Ralph Wirth, Christian Karnutsch, Siegmar Kugler, and Klaus Streubel, “High-efficiency resonant-cavity LEDs emitting at 650 nm,” IEEE Photonics Technology Letters, Vol. 13, No. 5 (2001).
    [29] K. Bergenek, Ch. Wiesmann, H. Zull, R. Wirth, P. Sundgren, N. Linder, K. Streubel and T. F. Krauss, “Directional light extraction from thin-film resonant cavity light-emitting diodes with a photonic crystal,” Applied Physics Letters 93, 231109 (2008).
    [30] Sylvain David, Alexei Chelnokov, and Jean-Michel Lourtioz, “Isotropic Photonic Structures: Archimedean-Like Tilings and Quasi-Crystals,” IEEE Journal of Quantum Electronics, Vol. 37, No. 11, (2001).
    [31] Yi Yang and Guo Ping Wang, “Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals,” Optics Express 599114 / Vol. 15, No. 10 (2007).
    [32] Jovanovi? D, Gaji? R and Hingerl K, “Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices,” Optics Express 4048 / Vol. 16, No. 6 / 17 March (2008).
    [33] Dragan P. Uskokovi?, Slobodan K. Milonji? and Dejan I. Rakovi?, “Negative Refraction and Left-handedness in 2D Archimedean Lattice Photonic Crystals,” Materials Science Forum Vol. 555, pp 83-88 (2007).
    [34] Jiun-Yeu Chen, Yi-Geng Li, Jia-Yi Yeh, Lien-Wen Chen and Ching-Cheng Wang, “design and modeling for enhancement of light extraction in light-emitting diodes with Archimedean lattice photonic crystals, Progress In Electromagnetics Research B, Vol. 11, 265–279 (2009).
    [35] Jiun-Yeu Chen, Yi-Geng Li, Jia-Yi Yeh, Lien-Wen Chen and Ching-Cheng Wang, “Improvement of external extraction efficiency in light-emitting diodes using an Archimedean tiling pattern: a parametric study, Journal of Optoelectronics and Advanced Materials, Vol. 11, No. 2, P.197–203 (2009).

    下載圖示 校內:2018-07-30公開
    校外:2018-07-30公開
    QR CODE