簡易檢索 / 詳目顯示

研究生: 吳明勲
Wu, Ming-Hsun
論文名稱: 透過被動Q開關產生雙波長圓柱向量Nd:GdVO₄脈衝雷射
Generation of Dual-Wavelength Cylindrical Vector Pulsed Nd:GdVO₄ Laser via Passive Q-Switching
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 110
中文關鍵詞: 雙波長圓柱向量光束被動Q開關
外文關鍵詞: dual-wavelength, cylindrical vector beam, passively Q-switched
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗採用 c-cut 雙折射晶體 Nd:GdVO₄,架設單晶體單光軸的共振腔架構,並於同一光軸上加入兩個輸出耦合鏡,實現1064 nm與1342 nm的雙波長雷射輸出。由於雙折射晶體中尋常光(o-ray)與非尋常光(e-ray)具有不同的折射率,導致其在共振腔內所對應的有效腔長不同,針對兩種折射率情況進行穩定區模擬,並依據模擬結果完成腔體設計。由於兩者穩定區相互分離,使得腔內可以同時產生徑向偏振與方位角偏振的圓柱向量光束。並上述基礎上加入飽和吸收體Cr:YAG實施被動Q開關的操作,成功產生脈衝式的圓柱向量光輸出。
    隨後,為了評估光束的偏振品質以及空間特性,透過狹縫以及偏振片量測其偏振度,再經由CCD映像測量法量測其M²光束品質因子。此外,利用示波器擷取脈衝訊號以分析其單脈衝能量、重複頻率與脈衝寬度(FWHM),表示系統的輸出性能。

    In this work, we demonstrate the generation of a dual-wavelength cylindrical vector pulsed laser based on a c-cut Nd:GdVO₄ gain medium using passive Q-switching. A compact four-mirror resonator incorporating two output couplers designed for 1064 nm and 1342 nm is employed to realize simultaneous dual-wavelength operation within a single cavity. Owing to the intrinsic birefringence of the Nd:GdVO₄ crystal, the ordinary- and extraordinary-polarized components experience different refractive indices, resulting in distinct effective optical path lengths and separated resonator stability regions. Such a cavity configuration enables the direct generation of cylindrical vector beams, including radially polarized (RP) and azimuthally polarized (AP) modes, at both wavelengths. By inserting a Cr⁴⁺:YAG saturable absorber, stable passively Q-switched dual-wavelength cylindrical vector pulses are obtained. The polarization characteristics of the generated CVBs are evaluated using a slit and a rotating polarizer to determine the degree of polarization (DOP), while the beam quality factor M² is characterized using a CCD based beam profiling method. The temporal behaviors of the Q-switched pulses are further investigated with an oscilloscope. The proposed system provides an effective approach for realizing dual-wavelength cylindrical vector pulsed Nd:GdVO₄ lasers, which may facilitate advanced applications requiring structured light and multi-wavelength pulsed operation.

    摘要 I Extended Abstract II 致謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 2.1 Nd摻雜雷射晶體 1 2.2 圓柱向量光 3 2.3 Q開關 8 2.4 雙波長脈衝輸出 11 2.5 研究動機與目的 14 第二章 原理 16 3.1 圓柱向量光基本特性 16 3.2 單軸雙折射晶體生成圓柱向量光 21 3.3 共振腔穩定區 23 3.4 被動Q開關 30 3.5 雷射spiking 32 3.6 M-squared光束品質因子 36 第三章 雙波長圓柱向量光CW輸出 41 4.1 實驗架構 41 4.2 四面鏡架構穩定區 43 4.3 實驗結果與討論 49 第四章 雙波長圓柱向量光脈衝輸出 55 5.1 雙波長脈衝架設 55 5.2 雙波長脈衝輸出特性 57 5.2.1 改變腔長 57 5.2.2 改變功率 61 5.3 雙波長圓柱向量光脈衝輸出特性 72 5.3.1 偏振度 72 5.3.2 光束品質因子 78 第五章 結論與未來展望 84 6.1 實驗結果與討論 84 6.2 未來展望 85 參考資料 86

    [1] A. Forbes, “Structured light from lasers,” Laser & Photonics Reviews, 13, 1900140 (2019).
    [2] J. Wang and Y. Liang, “Generation and detection of structured light: a review,” Frontiers in Physics, 9, 688284 (2021).
    [3] J. Bütow, J. S. Eismann, V. Sharma, D. Brandmüller, and P. Banzer, “Generating free-space structured light with programmable integrated photonics,” Nature Photonics, 18, 243-249 (2024).
    [4] Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Optics express, 20, 17653-17666 (2012).
    [5] J.-F. Kuo and C.-W. Cheng, “Fabrication of grooves on 4H–SiC using femtosecond laser vector beam,” Optics Communications, 574, 131200 (2025).
    [6] Z. Li, O. Allegre, and L. Li, “Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus,” Light: Science & Applications, 11, 339 (2022).
    [7] M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Optics express, 18, 22305-22313 (2010).
    [8] S. Zhang et al., “Improvement of the surface condition of laser-drilled holes via a dual-wavelength double-pulse train,” Optics & Laser Technology, 157, 108681 (2023).
    [9] M. Gedvilas, J. Mikšys, J. Berzinš, V. Stankevič, and G. Račiukaitis, “Multi-photon absorption enhancement by dual-wavelength double-pulse laser irradiation for efficient dicing of sapphire wafers,” Scientific reports, 7, 5218 (2017).
    [10] A. V. Bulgakov, J. Sladek, J. Hrabovský, I. Mirza, W. Marine, and N. M. Bulgakova, “Dual-wavelength femtosecond laser-induced single-shot damage and ablation of silicon,” Applied Surface Science, 643, 158626 (2024).
    [11] K.-G. Hong, Y.-C. Lu, and M.-D. Wei, “Dual-wavelength pulsed dynamics in Nd: GdVO4 laser with Cr4+: YAG saturable absorber: roles of pump rate and spot size,” Journal of the Optical Society of America B, 34, 1740-1746 (2017).
    [12] F. Chen, J. Sun, R. Yan, and X. Yu, “Reabsorption cross section of Nd3+-doped quasi-three-level lasers,” Scientific reports, 9, 5620 (2019).
    [13] J. Geusic, H. Marcos, and L. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Applied Physics Letters, 4, 182-184 (1964).
    [14] A. Zagumennyĭ, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. Meyen, and G. Huber, “The Nd: GdVO4 crystal: a new material for diode-pumped lasers,” Soviet journal of quantum electronics, 22, 1071 (1992).
    [15] J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd: doped crystals,” Optics express, 16, 8995-9010 (2008).
    [16] K. Semwal and S. Bhatt, “Study of Nd3+ ion as a dopant in YAG and glass laser,” International Journal of Physics, 1, 15-21 (2013).
    [17] W. Koechner, Solid-state laser engineering. springer, 2013.
    [18] M. Bode, I. Freitag, A. Tünnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Optics Letters, 22, 1220-1222 (1997).
    [19] Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Optics express, 14, 10528-10536 (2006).
    [20] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Advances in Optics and Photonics, 1, 1-57 (2009).
    [21] C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” Journal of Optics, 20, 123001 (2018).
    [22] G. M. Lerman, Y. Lilach, and U. Levy, “Demonstration of spatially inhomogeneous vector beams with elliptical symmetry,” Optics letters, 34, 1669-1671 (2009).
    [23] X.-B. Hu, C.-Y. Chen, Q.-Y. Yuan, V. Rodriguez-Fajardo, C. Rosales-Guzmán, and B. Perez-Garcia, “Generalized Elliptical Vector modes,” arXiv preprint arXiv:2502.09059, (2025).
    [24] C. He, Y. Shen, and A. Forbes, “Towards higher-dimensional structured light,” Light: Science & Applications, 11, 205 (2022).
    [25] D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE 01,” Applied Physics Letters, 20, 266-267 (1972).
    [26] Y. Mushiake, K. Matsumura, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proceedings of the IEEE, 60, 1107-1109 (1972).
    [27] M. Zhao and X. Xie, "Generation of arbitrary vector beams with a spatial light modulator," in 2012 14th International Conference on Electronic Materials and Packaging (EMAP), 2012: IEEE, pp. 1-3.
    [28] J. Mendoza-Hernández, M. F. Ferrer-Garcia, J. Arturo Rojas-Santana, and D. Lopez-Mago, “Cylindrical vector beam generator using a two-element interferometer,” Optics express, 27, 31810-31819 (2019).
    [29] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Optics letters, 32, 1468-1470 (2007).
    [30] M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Optics letters, 21, 1948-1950 (1996).
    [31] M. P. Thirugnanasambandam, Y. Senatsky, and K.-i. Ueda, “Generation of radially and azimuthally polarized beams in Yb: YAG laser with intra-cavity lens and birefringent crystal,” Optics Express, 19, 1905-1914 (2011).
    [32] Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Optics Letters, 30, 3063-3065 (2005).
    [33] A. E. Siegman, Lasers. University science books, 1986.
    [34] T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+: YAG passive Q-switch in CW pumped Nd: YAG lasers,” Optics & Laser Technology, 29, 145-149 (1997).
    [35] C. Li and K.-i. Ueda, "Diode-pumped passively Q-switched Nd: GdVO4 laser with a Cr4+: YAG crystal as the saturable absorber," in Advanced Solid State Lasers, 2000: Optica Publishing Group, p. WE6.
    [36] J. Peng, Y. Zheng, Y. Shi, and J. Shen, “Passively Q-switched a-cut Nd: GdVO4 self-Raman laser with Cr: YAG,” Optics & Laser Technology, 44, 2175-2177 (2012).
    [37] A. Podlipensky, V. Shcherbitsky, N. Kuleshov, V. Mikhailov, V. Levchenko, and V. Yakimovich, “Cr2+: ZnSe and Co2+: ZnSe saturable-absorber Q switches for 1.54-µ m Er: glass lasers,” Optics letters, 24, 960-962 (1999).
    [38] A. Sato, S. Okubo, K. Asai, S. Ishii, and K. Mizutani, “Energy extraction in dual-wavelength Q-switched laser with a common upper laser level,” Applied Physics B, 117, 621-631 (2014).
    [39] Y. Lin et al., “Single-longitudinal-mode, tunable dual-wavelength, CW Nd: YVO4 laser,” Optics Express, 14, 5329-5334 (2006).
    [40] B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd: GdVO4 laser working at 1063 and 1065 nm,” Optics express, 17, 6004-6009 (2009).
    [41] Y. Lü, J. Xia, H. Liu, and X. Pu, “Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd: YVO4 laser,” Journal of Applied Physics, 116, (2014).
    [42] T. Huang et al., “Synchronized self-mode-locked 1061-nm and 1064-nm monolithic Nd: YAG laser at cryogenic temperatures with two orthogonally polarized emissions: generation of 670 GHz beating,” Optics Express, 24, 22189-22197 (2016).
    [43] X. Sun et al., “Dual-wavelength synchronously mode-locked Nd: LaGGG laser operating at 1.3 μm with a SESAM,” RSC advances, 7, 32044-32048 (2017).
    [44] C. Bethea, “Megawatt power at 1.318 µ in Nd 3+: YAG and simultaneous oscillation at both 1.06 and 1.318 µ,” IEEE Journal of Quantum Electronics, 9, 254-254 (2003).
    [45] H. Huang et al., “Intermittent oscillation of 1064 nm and 1342 nm obtained in a diode-pumped doubly passively Q-switched Nd: YVO4 laser,” Applied Physics B, 96, 815-820 (2009).
    [46] K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 μ m in a Nd3+: YAG–Cr4+: YAG oscillator at 300 K,” Optics letters, 18, 814-816 (1993).
    [47] K.-G. Hong and M.-D. Wei, “Simultaneous dual-wavelength pulses achieved by mixing spiking and passive Q-switching in a pulsed Nd: GdVO4 laser with a Cr4+: YAG saturable absorber,” Optics Letters, 41, 2153-2156 (2016).
    [48] R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Physical review letters, 91, 233901 (2003).
    [49] K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Optics express, 7, 77-87 (2000).
    [50] R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Applied Physics Letters, 77, 3322-3324 (2000).
    [51] C.-H. Chuang, C.-Y. Ho, Y.-C. Hsiao, C.-P. Chiu, and M.-D. Wei, “Selection rule for cavity configurations to generate cylindrical vector beams with low beam quality factor,” Optics express, 29, 5043-5054 (2021).
    [52] H. J. Eichler, J. Eichler, and O. Lux, "Optical resonators," in Lasers: Basics, Advances and Applications: Springer, 2018, pp. 231-244.
    [53] L. Erickson and A. Szabo, “Effects of Saturable Absorber Lifetime on the Performance of Giant‐Pulse Lasers,” journal of Applied Physics, 37, 4953-4961 (1966).
    [54] G. Spühler et al., “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” Journal of the Optical Society of America B, 16, 376-388 (1999).
    [55] V. Pérez-Alonso, R. Weigand, M. Sánchez-Balmaseda, and J. G. Pérez, “Powerful algebraic model to design Q-switched lasers using saturable absorbers,” Optics & Laser Technology, 164, 109506 (2023).
    [56] T. H. Maiman, “Stimulated optical radiation in ruby,” nature, 187, 493-494 (1960).
    [57] R. Collins, D. Nelson, A. Schawlow, W. Bond, C. Garrett, and W. Kaiser, “Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby,” Physical Review Letters, 5, 303 (1960).
    [58] A. E. Siegman, “Defining, measuring, and optimizing laser beam quality,” Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, 1868, 2-12 (1993).
    [59] G. Nemes and A. Kostenbauder, “Laser beam characterization,” ASTiGMAT Technical Text TT_032105, (2005).
    [60] D. H. Sliney and B. C. Freasier, “Evaluation of optical radiation hazards,” Applied Optics, 12, 1-24 (1973).
    [61] X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE journal of quantum electronics, 35, 1912-1918 (1999).

    QR CODE