| 研究生: |
陳奕良 Chen, Yi-Liang |
|---|---|
| 論文名稱: |
300kgf旁通預分解過氧化氫混合火箭之研究 Development of a 300kgf Bypass Hydrogen Peroxide Hybrid Rocket System |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 過氧化氫 、混合火箭 、旁通觸媒床 、預分解 、液體噴注 |
| 外文關鍵詞: | hybrid rocket, bypass catalyst, hydrogen peroxide, spray injection, auto ignition |
| 相關次數: | 點閱:88 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混合火箭具有推力可控、可重複點火、比衝值高、系統結構簡單以及研發成本低的特性,且理論比衝值可以和液態火箭相當,可階段性代替液態火箭做為上層火箭或軌道推進器。過去本實驗室成功建立30kgf過氧化氫混合火箭的測試平台以及資料庫,然而在測試過程中發現旋流噴注器會因燃燒室的熱回朔而產生燒蝕的現象,而30kgf的尺度太小無法進行改善,因此本研究的目的在於建立一推力為300kgf旁通預分解過氧化氫混合火箭,利用中心液體的部分來防止燃燒室的熱回朔造成噴注器因承受不了高溫而損毀。
在中心噴注的部分採用霧化噴嘴進行液態噴注,搭配旋流噴注器同時噴注進入燃燒室,透過熱傳計算來分析中心液體與分解氣的搭配是否足夠進行發動機的點火並做為發動機液氣比的設計參考。利用視流法去觀測旁通氣體與液體噴霧的交互作用,發現旁通氣體確實會影響霧化液滴碰到壁面的距離。在觸媒床設計的部分為了和30kgf的觸媒床有相似的壓損性質以及分解效率,並藉由本實驗室長期以來過氧化氫單推的觸媒室設計來進行本研究的觸媒床設計,透過觸媒床測試模擬燃燒室建壓前後之不同流量皆不會造成觸媒床貫穿的現象,並且觸媒床壓損與30kgf的類似。在燃燒室設計的部分,根據所設計的旋流噴注器強度以及觸媒床的尺寸,並參考30kgf的測試資料進行設計,而為了瞭解藥柱所需的最短點火長度是否能夠與中心的噴霧配合,因此進行藥柱點火長度測試,而測試結果也證實藥柱點火長度與噴霧液滴碰到藥面的距離相匹配。
最後進行300kgf旁通預分解過氧化氫混合火箭的測試,測試結果成功到達設定的300公斤推力,並透過管路壓損設計成功防止燃燒室的壓力震盪產生不穩定,點火延遲約為0.3秒,且中心液體的噴注也成功防止燃燒室的熱回朔,達到保護旋流噴注器的目的。
The objective of this research is to establish a 300kgf bypass liquid hydrogen peroxide hybrid rocket system, and the study includes theoretical calculation, bypass liquid hydrogen peroxide (HP) catalyst chamber design and engine design. The purpose of using bypass liquid HP spray is to prevent the heat transfer from combustion chamber which may cause damage and failure to the swirl injector. The design of the catalyst chamber is based on the previous experience of long-term studies of the HP mono-propellant thrusters and 30kgf HP hybrid rockets in our laboratory. The determination of oxidizer flux of catalyst chamber, swirl injector, and length-diameter ratio (L/D) of the propellant are scaled up based on the successful previous results of the 30kgf HP hybrid rocket. Flow visualization and cold gas are used to simulate the interaction of the decomposed gas and HP spray in the propellant port. The ignition distance is estimated by varying different propellant grain lengths. Experimental test results of the 300kgf hybrid rocket system show that the ignition delay time is 0.3s, the average thrust is 300kgf, and Isp is 220.75s at sea level. The liquid injection successfully prevents the heat transfer from combustion chamber.
[1] 李俊明, 施耿維, 劉軒誠, 邱慶龍, 賈澤民, 賴維祥, et al., "混合火箭之初步設計及研究," 中國航空太空學會學刊, vol. 31, pp. 235-240, 1999.
[2] J. C. Martin and K. K. Kenneth, "Fundamentals of hybrid rocket combustion and propulsion," Progress in Astronautics and Aeronautics, vol. 218, 2007.
[3] H. Walter, "Experience with the Application of Hydrogen Peroxide for Production of Power," Journal of Jet Propulsion, vol. 24, pp. 166-171, 1954/05/01 1954.
[4] J. Becklake, "The British Black Knight Rocket," Journal of the British Interplanetary Society, vol. 43, pp. 283-290, 1990.
[5] J. E. Ronningen, J. Husdal, M. Berger, R. Vesterås, and G. Raudsandmoen, "Nammo hybrid rocket propulsion TRL improvement program," in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, ed: American Institute of Aeronautics and Astronautics, 2012.
[6] C. J. Verberne, A. J. Boiron, and J. E. R?nningen, "Development and Testing of Hydrogen Peroxide Hybrid Rocket Motors at Nammo Raufoss," in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, ed: American Institute of Aeronautics and Astronautics, 2014.
[7] https://www.gspacetech.com/about-us
[8] D. Altman and A. Holzman, "Overview and history of hybrid rocket propulsion," PROGRESS IN ASTRONAUTICS AND AERONAUTICS, vol. 218, p. 1, 2007.
[9] M. Pugibet and H. Moutet, "On the use of hydrogen peroxide as oxidizer in hybrid systems," 1970.
[10] G. E. Moore, "A Solid-Liquid Rocket Propellant System," Journal of Jet Propulsion, vol. 26, pp. 965-968, 1956.
[11] L. Pirault-Roy, C. Kappenstein, M. Gué, rin, R. Eloirdi, and N. Pillet, "Hydrogen peroxide decomposition on various supported catalysts effect of stabilizers," Journal of Propulsion and Power, vol. 18, pp. 1235-1241, 2002.
[12] E. J. Wernimont and S. E. Meyer, "Hydrogen Peroxide Hybrid Rocket Engine Performance Investigation," AIAA paper, pp. 94-3147, 1994.
[13] N. Tsujikado, M. Koshimae, R. Ishikawa, K. Kitahara, and A. Ishihara, "90% Hydrogen Peroxide/Polyethylene Solid Fuel Hybrid Rocket Engine," in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, p. 4091.
[14] E. S. Jung and S. Kwon, "Autoignitable and Restartable Hybrid Rockets Using Catalytic Decomposition of an Oxidizer," Journal of Propulsion and Power, vol. 30, pp. 514-518, 2014/03/01 2014.
[15] S. Kang, D. Lee, E. Lee, and S. Kwon, "Performance Evaluation of Hybrid Rocket using 95 wt.% H2O2," 2016.
[16] G. Zilliac, B. S. Waxman, A. M. Karabeyoglu, B. Cantwell, and B. J. Evans, "Peregrine hybrid rocket motor development," in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014, p. 3870.
[17] B. J. Roy and R. A. Frederick, "Overview of Vortex Injected Hybrid Rocket Engines-Regression Rate Modeling," in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016, p. 4530.
[18] S. A. Whitmore and D. P. Merkley, "Arc-Ignition of a 70%-85% Hydrogen Peroxide/ABS Hybrid Rocket System," in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, p. 5047.
[19] G. Cai, C. Li, S. Zhao, and H. Tian, "Transient analysis on ignition process of catalytic hybrid rocket motor," Aerospace Science and Technology, vol. 67, pp. 366-377, 2017.
[20] T. Morita, S. Yuasa, T. Shimada, and S. Yamaguchi, "Model of Hybrid Rocket Combustion in Classical Hybrid Rocket Motors," in 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference, ed, 2013, p. 4134.
[21] 呂政儒, "自發點火式過氧化氫混合火箭技術研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2017.
[22] E. Wernimont and S. Heister, "Progress in hydrogen peroxide oxidized hybrid rocket experiments," in 32nd Joint Propulsion Conference and Exhibit, 1996, p. 2696.
[23] E. J. Wernimont, "Experimental study of combustion in hydrogen peroxide hybrid rockets," 1997.
[24] E. Wernimont and S. Heister, "Combustion experiments in hydrogen peroxide/polyethylene hybrid rocket with catalytic ignition," Journal of Propulsion and Power, vol. 16, pp. 318-326, 2000.
[25] 莫嘉傑, "預分解過氧化氫與HTPB/石蠟混合火箭之研發及測試," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2016.
[26] 趙怡欽、許紘瑋、許耀中, "發展具入軌暨姿控功能之過氧化氫型態混合火箭技術," 國防科技學術合作計畫成果論文集, 2017.
[27] R.-J. Koopmans, J. Shrimpton, G. Roberts, and A. Musker, "Dependence of Pellet Shape and Size on Pressure Drop in H 2 O 2 Thrusters," Journal of Propulsion and Power, vol. 30, pp. 775-789, 2014.
[28] 陳建安, "過氧化氫觸媒雙推進劑熱機引擎之研發," 成功大學航空太空工程學系學位論文, pp. 1-109, 2004.
[29] C. K. Law, Combustion physics: Cambridge university press, 2010.
[30] J. Warnatz, U. Maas, R. W. Dibble, and J. Warnatz, Combustion vol. 3: Springer, 1996.