| 研究生: |
江宗憲 Chiang, Tsung-Hsien |
|---|---|
| 論文名稱: |
核磁共振研究自旋能隙化合物Na3Cu2SbO6 NMR Study of Spin Gap Compound Na3Cu2SbO6 |
| 指導教授: |
呂欽山
Lue, Chin-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 自旋能隙 、核磁共振 |
| 外文關鍵詞: | spin gap, nuclear magnetic resonance |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是因為我們對Na3Cu2SbO6的自旋能隙行為感到有興趣,於是我們將樣品粉末從4 K到300 K做了23Na核磁共振量測,利用核磁共振量測來觀察樣品的磁特性。我們對Na3Cu2SbO6進行23Na核磁共振研究,其中分奈特位移和自旋晶格鬆弛率兩部分來詳述此樣品之磁特性。在與溫度相關的NMR shift中發現,樣品具有低維磁特性,且在Tmax=95 K有段很寬的最大值,而低於95 K時NMR shift則急速下降。在溫度小於Tmax時,NMR shift和自旋晶格鬆弛率皆明顯有活性反應,證實了在本樣品Na3Cu2SbO6確實具有自旋能隙。從實驗得到的NMR數據,發現反鐵磁-反鐵磁交替鏈模型(AF-AF alternating chain model)和反鐵磁-鐵磁交替鏈模型(AF-F alternating chain model)皆適用於擬合本實驗之NMR數據,其中前者可得到一自旋能隙約為62 K,而這值與由中子散射測量所得到的能隙104 K (8.9 meV)相比小了許多。而由後者所得到的自旋能隙約為112 K,與8.9 meV相差不多。這也說明AF-F交替鏈模型較適合用來了解Na3Cu2SbO6之自旋能隙性質。
We report the results of a 23Na nuclear magnetic resonance (NMR) study on Na3Cu2SbO6 at temperatures between 4 and 300 K, due to interested in spin gap behavior of Na3Cu2SbO6. We will present a detailed 23Na nuclear magnetic resonance study invoking NMR shift and spin lattice relaxation rates on this compound. The temperature-dependent NMR shift exhibits a character of low-dimensional magnetism with a broad maximum at Tmax≃95 K, the NMR shift decreases rapidly with lowering temperature. Below Tmax, the NMR shift and spin lattice relaxation rates clearly indicate activated responses, confirming the existence of a spin gap in Na3Cu2SbO6. The experimental NMR data can be well fitted to the AF-AF alternating chain model and AF-F alternating chain model, the former yields a spin gap of about 62 K which is substantially smaller than 104 K (8.9 meV) observed by the neutron scattering measurement. The latter yields a spin gap of about 112 K, close to the 8.9 meV. It thus points out that the AF-F alternating chain model is proper for the understanding of the spin gap nature in Na3Cu2SbO6.
(1) P. Lemmens, G. Guntherodt, and C. Gros, Phys. Rep. 375, 1 (2003), and references therein.
(2) A. N. Vasil’ev, M. M. Markina, and E. A. Popova, Low Temp. Phy. 31, 203 (2005), and references therein.
(3) M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993)
(4) T. Barnes and J. Riera, Phys. Rev. B 50, 6817 (1994)
(5) M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys. Rev. Lett. 73, 3463 (1994)
(6) Z. He, T. Kyomen, and M. Itoh, Phys. Rev. B 69, R220407 (2004)
(7) C. S. Lue and B. X. Xie, Phys. Rev. B 72, 052409 (2005)
(8) C. S. Lue, C. N. Kuo, T. H. Su, and G. J. Redhammer, Phys. Rev. B 75, 014426 (2007)
(9) C. N. Kuo and C. S. Lue, Phys. Rev. B 78, 212407 (2008)
(10) C. S. Lue, S. C. Chen, C. N. Kuo, and F. C. Chou, Phys. Rev. B 80, 092404 (2009)
(11) T. Barnes, J. Riera, and D. A. Tennant, Phys. Rev. B 59, 11384 (1999)
(12) Kai P. Schmidt, Christian Knetter, and Gotz S. Uhrig, Phys. Rev. B 69, 104417 (2004)
(13) Y. Miura, R. Hirai, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn. 75, 084707 (2006)
(14) O. A. Smirnova, V. B. Nalbandyan, A. A. Petrenko, and M. Avdeev, J. Solid State Chem. 178, 1165 (2005)
(15) S. Derakhshan, H. L. Cuthbert, J. E. Greedan, B. Rahaman, and T. Saha-Dasgupta, Phys. Rev. B 76, 104403 (2007)
(16) H. -J. Koo and M. –H. Whangbo: Inorg. Chem. 47, 128 (2008)
(17) Y. Miura, Y. Yasui, T. Moyoshi, M. Sato, and K. Kakuria, J. Phys. Soc. Jpn. 77, 14709 (2008)
(18) S. Watanabe and H. Yokoyama: J. Phys. Soc. Jpn. 68, 2073 (1999)
(19) J. W. Hall, W. E. Marsh, R. R. Weller, and W. E. Hatfield, Inorg. Chem. 20, 1033 (1981)
(20) W. E. Hatfield, J. Appl. Phys. 52, 1985 (1981)
(21) J. J. Borras-Almenar, E. Coronado, J. Currrely, R. Georges, and J. C. Gianduzzo, Inorg. Chem. 33, 5171 (1994)