簡易檢索 / 詳目顯示

研究生: 陳庭萱
Chen, Ting-Hsuan
論文名稱: 陽台綠簾系統改善熱環境及懸浮微粒之研究
Study on the improvement of thermal environment and particulate matter by green curtain system on balcony
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 垂直綠化綠簾PM2.5熱環境
外文關鍵詞: vertical greening, green curtain, PM2.5, thermal environment
相關次數: 點閱:51下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣中的懸浮微粒(Particle Matter,PM)污染影響人類健康甚鉅,過去研究指出在城市中積極綠化能有效改善空氣品質與都市熱島現象。本研究藉由適當選擇植栽種類、配置及栽種方式,預期發展一套能降低懸浮微粒濃度及改善熱環境,且低成本、低維護的陽台綠簾系統(Green Curtain System,GCS)。

    選定於成功大學五樓及六樓陽台進行長期的環境量測,內容包含空氣溫度、相對濕度、黑球溫度、PM濃度、日射量及風速,以物理環境數據分析GCS對降低PM濃度及提升熱舒適度的效益。GCS植栽選定吊蘭Chlorophytum comosum、波士頓腎蕨Nephrolepis exaltata及窗簾蕨Nephrolepis pendula (Raddi) J. Sm.,實驗變因包含盆栽掛設數量、不同種類排列組合,以及洗葉頻率。

    熱環境之實驗進行於6-9月,因為夏季之PM環境濃度較低,有無綠簾陽台之PM濃度無顯著差異。但作用溫度(OT)則有顯著差異(p<0.001),以OT差異百分比(DROT)分析時,400 W/m2為分界,當日射量越高,效果越明顯;植栽盆數越多,DROT愈高。以總葉面積(L)及掛設之金屬擴張網面積(A)綜合分析時,與DROT之R2達0.77,顯示L/A Ratio具預測GCS改善熱環境效益之潛力。以WBGT評估陽台熱環境,參考健康熱風險相關研究,以32.5°C及30°C為標準,發現綠簾可有效降低超標小時數,降低健康風險。

    GCS與PM濃度實驗進行於10月~隔年3月,有GCS陽台之平均PM2.5濃度均較低,且環境濃度越高差異越大。有GCS陽台之風速普遍低於無GCS陽台,顯示綠簾具降低陽台風速之效果。GCS之降PM2.5濃度效果,可以DRPM2.5代表。分項變因而論,關於植栽種類,吊蘭效果最佳,顯著優於窗簾蕨及腎蕨,窗簾蕨及腎蕨效果相似。混合種類之GCS效能普遍優於單一種類。關於植栽盆數,60盆效果最佳,大幅優於44、30及14盆。關於洗葉頻率,效果兩天1次>一天1次>一天2次,一天2次及一天1次無顯著差異。長期不洗葉高達17天,GCS性能未有顯著下降,但洗葉後亦未明顯提高綠簾能效。綜合以上,降低PM2.5濃度效果最佳之綠簾配置為:平均混合吊蘭、窗簾蕨、腎蕨三種類植栽共60盆,洗葉頻率兩天1次。L/A Ratio亦具預測DRPM2.5的潛力,與DRPM2.5之R2達0.52。GCS於空污事件之防護能力,在濃度高峰可減少15-18μg/m3的PM2.5,效果顯著。本研究依據全病因65歲以上之死亡風險相關性分析,綠簾可有效減少高濃度的累計時數,降低PM2.5的相對風險。

    最後,本研究藉由兩階段之實驗結果,得到GCS改善熱環境及降低PM濃度於實場之驗證,並提出GCS的設計指引。

    The heat island effect and airborne particulate pollution are serious environmental problems in modern cities. This study intends to explore the effect and solution of vertical greening on building balconies to improve thermal environment and PM2.5 pollution.
    Research objectives include:
    1. Field verification of the effect of the green curtain system on the balcony of buildings to reduce PM2.5 concentration and improve thermal environment.
    2. Experiment with various green curtain configurations under different background conditions to explore their impact on the environment.
    3. Propose design guidelines for balcony green curtain system.
    On two balconies with similar locations and similar environmental conditions, an experimental group with green curtain and a control group without green curtain were set up. The green curtain were planted with Chlorophytum comosum, Nephrolepis exaltata and Nephrolepis pendula (Raddi) J. Sm.. Feild measurement of balcony environmental factors, including air temperature, globe temperature, wind speed,relative humidity, PM2.5 concentration, solar radiation, and leaf area, facade planting coverage of different green curtain configurations, etc. Use statistical analysis method compares the difference with and without the green curtain.
    It was found that the green curtain can effectively reduce the OT( Operative Temperature) and WBGT( Wet-Bulb Globe Temperature) of the balcony. The higher background solar radiation, the more number of planting pots lead to the better effect; Green curtains can also effectively reduce the concentration of PM2.5. Planting all over green curtain,mixing various plant types, and washing leaves once every two days will have the best effect.

    摘要 i 英文延伸摘要 ii 誌謝 xiv 目錄 xv 表目錄 xvi 圖目錄 xvii 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 4 1-3 研究範圍架構與流程 5 第二章 文獻回顧與相關理論 7 2-1 都市中的垂直綠化 7 2-2 垂直綠化與熱環境 12 2-3 植栽綠化與空氣懸浮微粒污染 15 2-4 垂直綠化對人類生理及心理的影響 23 第三章 研究方法 24 3-1 綠簾系統設計建置 24 3-2 實驗場域及環境因子量測 28 3-3 實驗規劃設計 31 3-4 熱環境評估方式 36 3-5 空氣懸浮微粒污染評估方式 40 3-6 綠簾植栽量測評估方式 41 第四章 綠簾與熱環境 47 4-1 實驗結果討論分析 47 4-2 綠簾評估指標預測熱環境改善 51 4-3 熱環境健康風險評估 53 第五章 綠簾與空氣懸浮微粒濃度 54 5-1 實驗結果討論分析 54 5-2 綠簾評估指標預測降低PM2.5濃度效能 66 5-3 PM2.5污染健康風險評估 70 第六章 健康防護綠簾設計指引 72 6-1 什麼是健康防護綠簾? 72 6-2 適用範圍及限制 72 6-3 設計方式及注意事項 73 第七章 結論與建議 77 7-1 研究結果討論 77 7-2 研究限制 79 7-3 後續研究建議 79 參考文獻 80

    (一) 中文文獻
    1. 林優陸(2009)。減緩都市熱島之數值模擬研究。國立臺北科技大學冷凍空調工程系所碩士論文,台北市。取自https://hdl.handle.net/11296/aqj3s7
    2. 謝昀昊(2016)。陽台立面綠化對室內熱環境與能耗改善之評估─以台南地區為例。國立成功大學建築學系碩士論文,台南市。取自https://hdl.handle.net/11296/e9479x
    3. 羅偉成、謝瑞豪、詹長權、林先和(2016)台灣可歸因於PM2.5暴露之死亡負擔。台灣醫學,20(4),396-405。取自https://doi.org/10.6320/FJM.2016.20(4).7
    4. 林建勳(2017)。金屬擴張網應用於陽台綠化之系統開發。國立成功大學建築學系碩士論文,台南市。取自https://hdl.handle.net/11296/622676
    5. 孫振義(2017)。熱季街道環境與熱舒適性關係之研究。都市與計劃,44(4),375-397。https://doi.org/10.6128/CP.44.4.375。
    6. 林憲德(2020)。熱溼氣候的人居熱環境。臺北市:詹氏書局。
    7. 蕭璽祐(2023)。臺灣南部族群暴露於大氣細懸浮微粒之短期及長期健康風險〔未出版之碩士論文〕。私立中原大學環境工程學系碩士學位論文,桃園市。

    (二) 英文文獻
    1. Abhijith,K.V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Sabatino, S. D.,& Pulvirenti, B.(2017).Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, 162, 71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014.
    2. Abhijith, K.V.,& Kumar, P.(2020). Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure. Environmental Pollution, 265 (B),114884. https://doi.org/10.1016/j.envpol.2020.114884.
    3. Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. Int J Biometeorol ,56, 515–535. https://doi.org/10.1007/s00484-011-0453-2
    4. Bustami, R. A., Belusko, M., Ward, J.,& Beecham,S.(2018). Vertical greenery systems: A systematic review of research trends. Building and Environment,146,226-237. https://doi.org/10.1016/j.buildenv.2018.09.045
    5. Bock,A. D., B., Belmans,S. V., Blom, J., Alvarado-Alvarado, A.A., & Audenaert, A.(2023).A review on the leaf area index (LAI) in vertical greening systems, Building and Environment, 229, 109926. https://doi.org/10.1016/j.buildenv.2022.109926
    6. Chun, C., Kwok A.,& Tamura A.(2004).Thermal comfort in transitional spaces—basic concepts: literature review and trial measurement. Building and Environment, 39(10), 1187-1192.https://doi.org/10.1016/j.buildenv.2004.02.003
    7. Chen, J., Zhu, L., Fan, P., Tian, L., & Lafortezza R. (2016). Do green spaces affect the spatiotemporal changes of PM2.5 in Nanjing?. Ecol Process. 5(7). https://doi.org/10.1186/s13717-016-0052-6
    8. Chen, L., Liu, C., Zhang, L., Zou, R., & Zhang, Z. (2017). Variation in tree species ability to capture and retain airborne fine particulate matter (PM 2.5). Scientific Reports,7(1),1-11.https://doi.org/10.1038/s41598-017-03360-1
    9. Cheng, F.Y.,& Hsu, C.H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Sci Rep ,9,6635. https://doi.org/10.1038/s41598-019-43104-x
    10. Cheng,Y.T., Lung ,S.C.C.,& Hwang,J.S.(2019) New approach to identifying proper thresholds for a heat warning system using health risk increments. Environmental Research, 170, 282-292. https://doi.org/10.1016/j.envres.2018.12.059
    11. Cao, Y., Li, F., Wang, Y., Yu, Y., Wang, Z., Liu, X.,& Ding, K.(2019).Assisted Deposition of PM2.5 from Indoor Air by Ornamental Potted Plants. Sustainability,11(9),2546. https://doi.org/10.3390/su11092546
    12. Dunnet, N.,& Kingsbury, N.(2008). Planting green roofs and living walls. Oregon: Timber Press.
    13. Elsadek,M., Liu,B.,& Lian,Z.(2019).Green façades: Their contribution to stress recovery and well-being in high-density cities.Urban Forestry & Urban Greening,46,126446. https://doi.org/10.1016/j.ufug.2019.126446
    14. Feriadi, H.(2004). Thermal comfort for naturally ventilated buildings in the tropical climate. [Unpublished doctoral dissertation]. National University of Singapore.
    15. Fernández-Cañero, R., Urrestarazu,L.P. ,& Perini,K.(2018).Chapter 2.1 - Vertical Greening Systems: Classifications, Plant Species, Substrates. Nature Based Strategies for Urban and Building Sustainability,45-54. https://doi.org/10.1016/B978-0-12-812150-4.00004-5.
    16. Fonseca,F., Paschoalino, M., & Silva, L.(2023). Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review. Sustainability,15(5),4107. https://doi.org/10.3390/su15054107
    17. Guo, C., Zhang, Z., Lau, A., Lin, C. Q., Chuang, Y. C., Chan, J., Jiang, W. K., Tam, T., Yeoh, E. K., Chan, T. C., Chang, L. Y., & Lao, X. Q. (2018). Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study. The Lancet. Planetary health, 2(3), e114–e125. https://doi.org/10.1016/S2542-5196(18)30028-7
    18. Ghazalli,A.J. , Brack,C. , Bai,X. & Said, I .(2019). Physical and Non-Physical Benefits of Vertical Greenery Systems: A Review. Journal of Urban Technology,26(4),53-78. https://doi.org/10.1080/10630732.2019.1637694
    19. Irga, P., Paull, N.J., Abdo, P., &Torpy, F.R.(2017). An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Building and Environment,115,281-290. https://doi.org/10.1016/j.buildenv.2017.01.035
    20. Jordan, G.J., Carpenter, R.J., Koutoulis, A., Price, A.,& Brodribb, T. J.(2015) Environmental adaptation in stomatal size independent of the effects of genome size. New Phytologist.,205(2),608-17. https://doi.org/10.1111/nph.13076.
    21. Koch, K.,& Ensikat,H.(2008).The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron, 39(7), 759-772. https://doi.org/10.1016/j.micron.2007.11.010.
    22. Köhler, M.(2008).Green façades e a view back and some visions. Urban Ecosystems, 11, 423–436. http://dx.doi.org/10.1007/s11252-008-0063-x
    23. Koch,K., Ysebaert, T., Denys,S.,& Samson, R.(2020).Urban heat stress mitigation potential of green walls: A review.Urban Forestry & Urban Greening, 55,126843. https://doi.org/10.1016/j.ufug.2020.126843.
    24. Liu, L., Guan, D.,& Peart, M.R.(2013).The dust retention capacities of urban vegetation—a case study of Guangzhou, South China. Environ Sci Pollut Res, 20, 6601–6610. https://doi.org/10.1007/s11356-013-1648-3
    25. Lung, S. C. C., Wang, W. C. V., Wen, T. Y. J.,Liu, C. H.,Hu, S. C.(2020). A versatile low-cost sensing device for assessing PM2.5 spatiotemporal variation and quantifying source contribution.Science of The Total Environment,716,137145. https://doi.org/10.1016/j.scitotenv.2020.137145.
    26. Lung, S. C. C., Tsou, M. C. M., Hu, S.C., Hsieh, Y. H., Wang, W. C. V., Shui, C. K.& Tan, C. H. (2021). Concurrent assessment of personal, indoor, and outdoor PM2.5 and PM1 levels and source contributions using novel low-cost sensing devices. Indoor Air, 31(3),755-768. https://doi.org/10.1111/ina.12763
    27. Lung, S. C. C., Yeh, J. C. J., & Hwang, J. S. (2021). Selecting Thresholds of Heat-Warning Systems with Substantial Enhancement of Essential Population Health Outcomes for Facilitating Implementation. International Journal of Environmental Research and Public Health, 18(18), 9506. https://doi.org/10.3390/ijerph18189506
    28. Li,Z., Wang, Y., Liu, H.,& Liu, H.(2022).Physiological and psychological effects of exposure to different types and numbers of biophilic vegetable walls in small spaces.Building and Environment,225,109645. https://doi.org/10.1016/j.buildenv.2022.109645.
    29. Lo, W. C., Ho, C. C., Tseng, E., Hwang, J. S., Chan, C. C., & Lin, H. H. (2022). Long-term exposure to ambient fine particulate matter (PM2.5) and associations with cardiopulmonary diseases and lung cancer in Taiwan: a nationwide longitudinal cohort study. International journal of epidemiology, 51(4), 1230–1242. https://doi.org/10.1093/ije/dyac082
    30. Lindén, J., Gustafsson, M., Uddling, J., Watne, Å.,& Pleijel, H.(2023).Air pollution removal through deposition on urban vegetation: The importance of vegetation characteristics.Urban Forestry & Urban Greening, 81,127843. https://doi.org/10.1016/j.ufug.2023.127843.
    31. Mashonjowa, E., Ronsse, F., Mubvuma, M., Milford, J. R., & Pieters, J. G. (2013). Estimation of leaf wetness duration for greenhouse roses using a dynamic greenhouse climate model in Zimbabwe. Computers and electronics in agriculture, 95, 70-81. https://doi.org/10.1016/j.compag.2013.04.007.
    32. Nalawade, A. & Gurav, R. (2017). Stomatal Studies in the Genus Chlorophytum (Asparagaceae). Bioscience Discovery, 8(3), 574-581. https://www.researchgate.net/publication/320615607_Stomatal_Studies_in_the_Genus_Chlorophytum_Asparagaceae
    33. Odagiu, A., Oroian, I., Balint, C., & Bordea, D. (2019). Testing nephrolepis exaltata (L.) schott. ability to be used as indoor air quality biomonitoring agent. ProEnvironment Promediu, 12(39). https://www.proquest.com/scholarly-journals/testing-nephrolepis-exaltata-l-schott-ability-be/docview/2339794762/se-2
    34. Pan, W. H.,Li, L. A., Tsai,M.J.(1995).Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese,The Lancet,345(8946),353-355. https://doi.org/10.1016/S0140-6736(95)90341-0
    35. Perini ,K.,& Rosasco ,P.(2013).Cost–Benefit analysis for green façades and living wall systems.Building and Environment,70, 110-121.
    https://doi.org/10.1016/j.buildenv.2013.08.012.
    36. Price, A., Jones, E.C. & Jefferson, F. (2015). Vertical Greenery Systems as a Strategy in Urban Heat Island Mitigation. Water Air Soil Pollut 226, 247.https://doi.org/10.1007/s11270-015-2464-9
    37. Prihatmanti, R. (2017). Improving Thermal Comfort through Vertical Greeneries in Transitional Spaces for the Tropical Climate: A Review. Journal of Engineering Technology, 4(3), 116–123. https://doi.org/10.5176/2251-3701_4.3.212
    38. Paull, N., Krix, D., Torpy, F.,& Irga, P.(2020).Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature?.International Journal of Environmental Research and Public Health, 17(14),5084. https://doi.org/10.3390/ijerph17145084
    39. Piracha, A.,& Chaudhary, M.T.(2022). Urban Air Pollution,Urban Heat Island and Human Health: A Review of the Literature.Sustainability, 14(15),9234.
    https://doi.org/10.3390/su14159234
    40. Raji,B., Tenpierik, M.J., ,& Dobbelsteen,A.V.D.(2015).The impact of greening systems on building energy performance: A literature review.Renewable and Sustainable Energy Reviews, 45,610-623. https://doi.org/10.1016/j.rser.2015.02.011
    41. Song J.(2006). Thermal comfort for semi-outdoor spaces in the tropics. [Doctoral dissertation]. National University of Singapore.
    42. Singapore Urban Redevelopment Authority(2017).Updates to the Landscaping for Urban Spaces and High-Rises (LUSH) Programme: LUSH 3.0.
    https://www.ura.gov.sg/Corporate/Guidelines/Circulars/dc17-06
    43. Srbinovska, M., Andova,V., Mateska, A. K.,& Krstevska,M.C.(2021).The effect of small green walls on reduction of particulate matter concentration in open areas.Journal of Cleaner Production,279,123306. https://doi.org/10.1016/j.jclepro.2020.123306.
    44. Torpy, F. & Zavattaro, M. (2018). Bench-Study of Green-Wall Plants for Indoor Air Pollution Reduction. Journal of Living Architecture, 5, 1-15. https://doi.org/10.46534/jliv.2018.05.01.001
    45. Tomson,M., Kumar, P., Barwise,Y., Perez,P., Forehead, H., French, K., Morawska,L.,& Watts,J. F.(2021).Green infrastructure for air quality improvement in street canyons.Environment International, 146,106288. https://doi.org/10.1016/j.envint.2020.106288.
    46. Urrestarazu,L.P.,Fernández-Cañero,R., Franco-Salas, A., & Egea, G. (2015) Vertical Greening Systems and Sustainable Cities. Journal of Urban Technology, 22(4), 65-85. https://doi.org/10.1080/10630732.2015.1073900
    47. Vera,S., Viecco,M.,& Jorquera,H.(2021).Effects of biodiversity in green roofs and walls on the capture of fine particulate matter.Urban Forestry & Urban Greening, 63,127229. https://doi.org/10.1016/j.ufug.2021.127229.
    48. Wong, N. H.,& Khoo, S. S.(2003). Thermal comfort in classrooms in tropical. Energy Building, 35, 337-351. https://doi.org/10.1016/S0378-7788(02)00109-3.
    49. Weerakkody,U., Dover,J.W., Mitchell, P.,& Reiling, K.(2017).Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station.Urban Forestry & Urban Greening,27,173-186. https://doi.org/10.1016/j.ufug.2017.07.005.
    50. Weerakkody ,U., Dover ,J.W., Mitchell ,P.& Reiling ,K.(2019). Topographical structures in planting design of living walls affect their ability to immobilise traffic-based particulate matter . Science of The Total Environment,660, 644-649. https://doi.org/10.1016/j.scitotenv.2018.12.292.
    51. World Health Organization. (‎2021)‎. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329.
    52. Wang, P., Wong, Y.H., Tan, C.Y., Li, S.,& Chong, W.T.(2022).Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability,14(20),12997. https://doi.org/10.3390/su142012997
    53. Yaglou,C.P.,& Minard, D. (1957). Control of heat casualties at military training centers. Am Med Assoc Arch Ind Health 16,302–316.
    54. Yang, W., Wong, N. H. & Jusuf, S. K.(2013). Thermal comfort in outdoor urban spaces in Singapore. Building and Environment, 59, 426-435. https://doi.org/10.1016/j.buildenv.2012.09.008.
    55. Ysebaert, T., Koch,K., Samson, R.,& Denys,S.(2021).Green walls for mitigating urban particulate matter pollution—A review.Urban Forestry & Urban Greening,59,127014. https://doi.org/10.1016/j.ufug.2021.127014.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE