| 研究生: |
楊凡毅 Yang, Fang-Yi |
|---|---|
| 論文名稱: |
液態噴注於超音速流場之細部流場數值模擬分析 Numerical simulations of detailed flow field for liquid injection into the supersonic flow |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 超音速氣流 、液態噴霧 、震波 、數值模擬 |
| 外文關鍵詞: | Supersonic flow, Liquid jet, Shock, Numerical simulation |
| 相關次數: | 點閱:89 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超音速燃燒衝壓引擎為自由流進入燃燒室內部時,速度維持在超音速狀態之吸氣式引擎。液態燃料注入燃燒室後,會經過霧化、破碎成小液滴,接著蒸發為氣態燃料,然後與氧氣混合,隨後燃燒。液態燃料由噴出到燃燒,中間的過程相當繁雜,但燃燒室之體積不大,且流速極快,容易造成霧化到燃燒過程尚未完成時,而流出燃燒室,甚至可能會因為流速過快使得點火不易。為了使噴霧燃料能充分進行上述提到的霧化與燃燒過程,並且可應用於超音速燃燒室中,了解超音速噴霧流場內部的構造以及流場與震波之間的關係,是一個非常重要的資訊。由於超音速噴霧流場相當複雜,藉由實驗設備觀察超音速噴霧流場細部的流場現象,難度相當高,並且實驗花費相當昂貴,因此,本研究使用ANSYS FLUENT進行數值模擬分析,藉由數值軟體探討液態噴注於超音速氣流中之細部流場,並觀察整理噴霧流量、入流馬赫速、迴流區以及震波之間的關係,提供未來設計超音速燃燒室之重要參數。
本研究使用液態水以及液態煤油垂直注入超音速燃燒室,自由流與液柱撞擊會產生高溫高壓之弓形震波,並且在液柱前方會生成迴流,而在迴流區前端會產生分離震波。使用不同噴注流量探討之結果顯示,提升噴注流量會提升弓形震波強度,並且會提升弓形震波角度,由於弓形震波增強,噴注前方的迴流區強度以及長度也會因此增加,造成分離震波高度以及強度之提升。接著,使用不同入口馬赫數之結果顯示,提升入口馬赫速,會增強弓形震波強度以及分離震波強度,但是,由於自由流流速提升,自由流往下游的動量較大,使得弓形震波角度以及分離震波高度會變小、迴流區長度會縮短。綜合不同噴注流量以及不同入口馬赫數之結果,發現隨著噴注流量提升或是入口流速的提升,弓形震波強度會越來越大,且弓形震波與分離震波強度的比值也越來越大。另外,針對注入液態煤油與注入液態水進行交叉比對,並進行相關之比較。結果顯示,由於液態煤油的密度較液態水小,在噴霧流量控制相同情況下,液態煤油的噴射速度較大,噴注動量較強,使得弓形震波強度提升,並且會提升弓形震波角度。由於弓形震波增強,噴注前方的迴流區強度以及長度也會因此增加,造成分離震波高度以及強度之提升,其流場的趨勢與不同噴注流量之結果類似。因此,液柱本身動量,可以影響震波強度、迴流區長度以及兩震波之交互作用點。本模擬之研究結果,可做為未來設計超音速液態噴霧流場之重要參數。
This study uses the numerical simulation software ANSYS FLUENT to conduct a numerical simulation of liquid-hydrocarbon fuel injected into a supersonic flow. With this numerical simulation we can investigate the detailed flow of the liquid jet into the supersonic flow, and observe the relationships among the Mach Number, flow rate of the liquid jet, recirculation zone and the shock waves. This study finds that when liquid kerosene is vertically injected into the supersonic flow, the free stream impacts the liquid column, and this produces a high- temperature, high-pressure shock wave. The flow forms a recirculation zone in front of the shock, and a separation shock results in the leading edge of the recirculation zone.
The results of using different injection flow rates show that increasing this will increase the strength of the bow shock, and also increase the angle of the bow shock. If the bow shock is enhanced then the length of the recirculation zone will increase, as will the height and strength of the separation shock. Moreover, the results of using different inlet Mach Numbers for the free stream show that enhancing the Mach Number will increase the strength of the bow shock and separation shock. However, due to the increase in inlet velocity, the flow has more momentum and thus makes the air flow downstream with greater intensity. Because of this, the angle of the bow shock will decrease, as will the length of the recirculation zone also decrease and the height of the separation shock. Moreover, when the Mach number of the free stream or the mass flow rate of injection increases, the interaction between the strength of bow shock and separation shock is strongly related to the strength of the bow shock.
Therefore, changing the momentum of injection can also change the strength of the shock, the length of the recirculation zone and the position of the interaction between the two shocks. The results of this simulation presented in this work can be used to further examine the impact of liquid jet into supersonic flow in future works.
[1]Mark J. Lewis, “Significance of fuel selection for hypersonic vehicle range,” Journal of propulsion and power, Vol. 17, No. 6, November–December 2001
[2]Tetlow, M. R., and Doolan, C. J., “Comparison of hydrogen and hydrocarbon-fueled scramjet engine for orbital insertion,” Journal of spacecraft and rockets, Vol.44, No.2, March-April 2007.
[3]Amati, V., Bruno, C., Simone, D., and Sciubba, E., “Exergy analysis of hypersonic propulsion system: Performance comparison of two different scramjet configurations at cruise conditions,” Energy, Vol.33, pp.116-129, 2008.
[4]Manna, P., Behera, R., Chakraborty, D., “Liquid-fueled strut-based scramjet combustor design: a computational fluid dynamics approach,” Journal of propulsion and power, Vol.24, No.2, March-April 2008.
[5]Wepler, U., and Koschel, W. W., “Numerical investigation of turbulent reacting flows in a scramjet combustor model, ” AIAA Paper 2002-3572, 2002.
[6]Zhang, D. W., Wang, Q., “Numerical simulation of supersonic combustor with innovative cavity,” Procedia engineering, 31 (2012) 708 – 712.
[7]Oevermann, M., “Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling,” Aerospace science and technology, Vol. 4, pp.463-480, 2000.
[8]C. F. Chenault and P. S. Beran, "K-ε and Reynolds stress turbulence model comparisons for two-dimensional injection flows," AIAA Journal, vol. 36, pp. 1401-1412, 1998.
[9]F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, vol. 32, pp. 1598-1605, 1994.
[10]O. Z. Liu, Y. H. Cai, Y. L. Hu, J. H. Liu, and W. H. Ling, "The turbulence models for numerical analysis of liquid kerosene supersonic combustion," Acta Aerodynamica Sinica, Vol.25, pp. 362-367, 2007.
[11]宋緯倫, "不同紊流模式對超音速流場數值模擬結果之影響," 成功大學航空太空工程學系碩士論文, 2010.
[12]S. Aso, S. Okuyama, M. Kawai, and Y. Ando, "Experimental study on mixing phenomena in supersonic flows with slot injection," AIAA Paper, pp. 91-0016, 1991.
[13]Lin, K.C., Kirkendall, K.A., Kennedy, P. J., and Jackson, T.A., ”Spray structures of aerated liquid fuel jets in supersonic crossflows,” AIAA Paper, 99-2374, 1999.
[14]Yu, G., Li, J.G., Yang, S. R., Yue, L. J.,and Zhang, X. Y. “Investigation of liquid hydrocarbon combustion in supersonic flow using effervescent atomization,” AIAA Paper 2002-4279.
[15]Yue, L. J., and Yu, G., “Studies on spray characteristics of barbotaged atomizer,” Journal of propulsion technology, Vol. 24, No. 4, Aug. 2003.
[16]Wang, L., Zhang, C. L., ei, B. X., and Xu, X., “Experimental investigation of kerosene supersonic combustion test using aerated-liquid injectors,” Journal of aerospace power, Vol. 24, No. 2, Feb. 2009.
[17]Balasubramanyam, M. S., and Chen, C. P., “Evaporating spray in supersonic streams including turbulence effects,” AIAA aerospace sciences meeting and exhibit January 9-12, 2006, Reno, Nevada AIAA 2006-1338.
[18]Yue, L. J., and Yu, G., “Numerical simulation of kerosene spray in supersonic cross flow,” Journal of propulsion technology, Vol. 25, No.1,Feb. 2004.
[19]Lin,K.C., Kennedy, P.J., and Jackson, T.A., “Structures of water jets in a Mach 1.94 supersonic crossflow,” AIAA paper, Vol.971, 2004.
[20]Wang, J.f., Liu, C., and Wu, Y.H., “Numerical simulation of spray atomization in supersonic flows,” Modern Physics Letters B, Vol.24, NO.13,pp. 1299-1302, 2010.
[21]劉靜,徐旭,“超音速橫向氣流中燃料霧化的數值模擬,” 北京航空航天大學學報,Vol. 36, NO.10,2010
[22]Yang, D.C., Zhu, W.B., Chen, H., Guo, J.X., and Liu, J.W., “Model the secondary breakup of a liquid jet in supersonic cross flows,” Journal of Harbin Engineering University, Vol.35, NO.1, pp.62-68, 2014.
[23]Ali, M., Fujiwara, T., Leblanc, J. E., “Influence of main flow inlet configuration on mixing and flameholding in transverse injection into supersonic airstream,” International Journal of Engineering Science, Vol. 38, 1161-1180, 2000.
[24]Ali, M., Sadrul Islam, A. K. M. and Ahmed, S., “Mixing and flameholding with air inlet configuration in scramjet combustor,” International Journal of Heat and Mass Transfer, Vol. 31, No. 8, 1187-1198, 2004.
[25]Ali, M. and Sadrul Islam, A. K. M., “Study on main Flow and fuel injector configurations for scramjet applications,” International Journal of Heat and Mass Transfer Vol. 49, 3634-3644, 2006.
[26] Liu, H., Guo Y., Lin, W., “Numerical investigation of liquid jet injection into a supersonic crossflow,” 29th Congress of the International Council of the Aeronautical Sciences, 2014.
[27]朱冠霖, “液態噴流注入超音速流場之數值模擬分析,” 成功大學航空太空工程學系碩士論文, 2015.
[28]ANSYS FLUENT, “Ansys Fluent 15.0 user guide”, ANSYS Inc, 2013.
[29]Ranz, W. E. and Marshall, W. R., Jr., “Evaporation from drops, Part II,” Chemical Engineering Progress (CEP) magazine, vol. 48, pp. 173-180, 1952.
[30]呂冠緯, “液體垂直噴注於超音速氣流之碎裂現象觀察,” 成功大學航空太空工程學系碩士論文, 2014.