| 研究生: |
林孟樺 Lin, Meng-Hua |
|---|---|
| 論文名稱: |
台灣沿海濕地洪災風險評估 Assessment of flooding risk in coastal wetland of Taiwan |
| 指導教授: |
郭重言
Kuo, Chung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 濕地 、洪災風險評估 、衛星測高 、海水面 |
| 外文關鍵詞: | Wetland, Flooding Risk Index, Satellite Altimetry, Sea Level |
| 相關次數: | 點閱:119 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
內政部營建署將台灣本島中總共60個區域列為重要濕地,其中包含多種類型的濕地,如內陸型濕地、人工型濕地及海洋或海岸型濕地,濕地可以為社會經濟、自然環境和生態維護帶來可觀的益處。但由於海水面上升和氣候變遷,導致各種極端氣候事件的發生,海洋或海岸型濕地面臨著一定程度的洪災風險,而台灣總共有27個海洋或海岸型濕地,這代表未來可能會有將近二分之一的重要濕地消失,故有必要對這些風險區域進行洪災風險的評估。本研究利用衛星測高所得的海水面異常資料來預測未來(2119年)的海水面上升高度,至於極端海水面的部分則是透過資料集Coastal Dataset for the Evaluation of Climate Impact (CoDEC)獲得,在進行洪災風險評估時,會同時考慮上述兩種情形,並將其二者之總和與各濕地高程進行比較以計算洪水深度及洪水影響區域。結果顯示,無論在基準年(2019年)或是未來,由於台灣西南部本身即屬於低漥地區,該區幾乎所有濕地都具有較高的洪災風險;而台灣東部的濕地則因為本身地勢較高,因而無論在基準年還是未來,洪災風險都相對較低,因此在政府需要對當地採取適當的保護措施時,洪災風險指標可以更顯而易見地呈現出各濕地間的優先保護順序。此外,本研究並未考慮海岸防護措施,某些濕地的洪災風險將會被高估。
A total of 60 areas on the main island of Taiwan is listed as important wetlands by the Construction and Planning Agency, Ministry of the Interior. The list includes many types of wetlands, such as inland wetlands, constructed wetlands, and marine or coastal wetlands. Wetlands can bring considerable benefits in the social economy, natural environment, and ecological maintenance. However, because of sea level rise and the occurrence of various extreme events caused by climate change, marine or coastal wetlands have been exposed to certain flooding risks. There are 27 coastal wetlands in Taiwan, indicating that almost half of the important wetlands may disappear in the future. Therefore, risk assessment is necessary for these risk areas. In this study, sea level anomalies derived from satellite altimetry are used to predict sea level height in 2119. The extreme sea level will be obtained from the Coastal Dataset for the Evaluation of Climate Impact (CoDEC). These two scenarios are taken into consideration individually for conducting flooding risk assessment, and the sum of these two scenarios will be compared to the elevation of each wetland to calculate the flooding depth and flooding area. The result shows that almost every wetland located in the southwestern area of Taiwan has a higher flooding risk because of the lower elevation no matter in the base year (2019) or in the future. In contrast, the wetlands located in the eastern Taiwan have a much lower flooding risk neither in the base year nor in the future. When the government needs to adopt appropriate protection actions for the local area, flood risk indexes can more clearly indicate the priority order of protection among wetlands. In this study, shore protection is not taken into the consideration, so the flooding risk of some wetlands will be overestimated.
林依潔(2012)。台北市洪災風險分析。國立臺灣大學生物環境系統工程學研究所。https://hdl.handle.net/11296/v9zcj7
帥柏任(2013)。台灣海岸濕地保育與開發利用之管理架構研擬 [未出版之碩士論文]。國立臺北大學自然資源與環境管理研究所在職專班。
陳品潔(2019)。探討不同因子導致沿岸淹水潛勢—以台灣為例 [未出版之碩士論文]。國立成功大學測量及空間資訊學系。
楊亭宜(2014)。利用波形重定改善近岸與內陸小水體之Envisat測高資料。國立成功大學測量及空間資訊學系。https://hdl.handle.net/11296/638j7q
內政部 (民103年6月4日)。103年臺灣地區大地起伏模型成果說明【公告】。
「臺灣氣候變遷推估與資訊平台建置計畫」團隊(2017)。臺灣氣候變遷科學報告 2017-物理現象與機制。國家災害防救科技中心。
Barbier, E. B. (2019). Chapter 27 - The Value of Coastal Wetland Ecosystem Services. In G. M. E. Perillo, E. Wolanski, D. R. Cahoon, & C. S. Hopkinson (Eds.), Coastal Wetlands (pp. 947-964). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00027-7
Bernier, N. B., Thompson, K. R., Ou, J., & Ritchie, H. (2007). Mapping the return periods of extreme sea levels: Allowing for short sea level records, seasonality, and climate change. Global and Planetary Change, 57(1), 139-150. https://doi.org/10.1016/j.gloplacha.2006.11.027
Bhang, K. J., Schwartz, F. W., & Braun, A. (2006). Verification of the vertical error in C-band SRTM DEM using ICESat and Landsat-7, Otter Tail County, MN. IEEE Transactions on Geoscience and Remote Sensing, 45(1), 36-44.
Borchert, S. M., Osland, M. J., Enwright, N. M., & Griffith, K. (2018). Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. Journal of Applied Ecology, 55(6), 2876-2887. https://doi.org/10.1111/1365-2664.13169
Canters, F., Vanderhaegen, S., Khan, A. Z., Engelen, G., & Uljee, I. (2014). Land-use simulation as a supporting tool for flood risk assessment and coastal safety planning: The case of the Belgian coast. Ocean & Coastal Management, 101, 102-113.
https://doi.org/10.1016/j.ocecoaman.2014.07.018
Christie, E. K., Spencer, T., Owen, D., McIvor, A. L., Möller, I., & Viavattene, C. (2018). Regional coastal flood risk assessment for a tidally dominant, natural coastal setting: North Norfolk, southern North Sea. Coastal Engineering, 134, 177-190. https://doi.org/10.1016/j.coastaleng.2017.05.003
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., . . . Nunn, P. D. (2013). Sea level change.
Church, J. A., & White, N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, 32(4), 585-602. https://doi.org/10.1007/s10712-011-9119-1
Collins, M. (2020). Extremes, abrupt changes and managing risks. Ocean Sciences Meeting 2020.
Emery, W., & Camps, A. (2017). Introduction to satellite remote sensing: atmosphere, ocean, land and cryosphere applications. Elsevier.
Fanos, A., Tahir, R., Mohammed, S., & Mahmood, M. (2018). Calculating of adjusted geoid undulation based on EGM08 and mean sea level for different regions in Iraq. MATEC Web of Conferences.
Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.
Gallop, S. L., Young, I. R., Ranasinghe, R., Durrant, T. H., & Haigh, I. D. (2014). The large-scale influence of the Great Barrier Reef matrix on wave attenuation. Coral Reefs, 33(4), 1167-1178.
Garner, A. J., Weiss, J. L., Parris, A., Kopp, R. E., Horton, R. M., Overpeck, J. T., & Horton, B. P. (2018). Evolution of 21st Century Sea Level Rise Projections. Earth's Future, 6(11), 1603-1615. https://doi.org/10.1029/2018EF000991
Gupta, R. P. (2018). Digital Elevation Model. In R. P. Gupta (Ed.), Remote Sensing Geology (pp. 101-106). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55876-8_8
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., . . . Levermann, A. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111(9), 3292. https://doi.org/10.1073/pnas.1222469111
Hoeke, R. K., McInnes, K. L., Kruger, J. C., McNaught, R. J., Hunter, J. R., & Smithers, S. G. (2013). Widespread inundation of Pacific islands triggered by distant-source wind-waves. Global and Planetary Change, 108, 128-138.
Jevrejeva, S., Frederikse, T., Kopp, R. E., Le Cozannet, G., Jackson, L. P., & van de Wal, R. S. W. (2019). Probabilistic Sea Level Projections at the Coast by 2100. Surveys in Geophysics, 40(6), 1673-1696. https://doi.org/10.1007/s10712-019-09550-y
Lakshmi, S., & Yarrakula, K. (2019). Review and critical analysis on digital elevation models. Geofizika, 35, 129-157. https://doi.org/10.15233/gfz.2018.35.7
Li, X., Bellerby, R., Craft, C., & Widney, S. E. (2018). Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 1(1), 1-15. https://doi.org/10.1139/anc-2017-0001
Lin, Q., & Yu, S. (2018). Losses of natural coastal wetlands by land conversion and ecological degradation in the urbanizing Chinese coast. Scientific Reports, 8(1), 15046. https://doi.org/10.1038/s41598-018-33406-x
McInnes, K. L., White, C. J., Haigh, I. D., Hemer, M. A., Hoeke, R. K., Holbrook, N. J., . . . Cox, R. (2016). Natural hazards in Australia: sea level and coastal extremes. Climatic Change, 139(1), 69-83. https://doi.org/10.1007/s10584-016-1647-8
Mehvar, S., Filatova, T., Dastgheib, A., De Ruyter van Steveninck, E., & Ranasinghe, R. (2018). Quantifying Economic Value of Coastal Ecosystem Services: A Review. Journal of Marine Science and Engineering, 6(1), 5. https://www.mdpi.com/2077-1312/6/1/5
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., . . . Verlaan, M. (2020). A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections [Original Research]. Frontiers in Marine Science, 7(263). https://doi.org/10.3389/fmars.2020.00263
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surges and extreme sea levels. Nature Communications, 7(1), 11969. https://doi.org/10.1038/ncomms11969
Newton, A., Brito, A. C., Icely, J. D., Derolez, V., Clara, I., Angus, S., . . . Khokhlov, V. (2018). Assessing, quantifying and valuing the ecosystem services of coastal lagoons. Journal for Nature Conservation, 44, 50-65. https://doi.org/10.1016/j.jnc.2018.02.009
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
Polidori, L., & El Hage, M. (2020). Digital elevation model quality assessment methods: A critical review. Remote Sensing, 12(21), 3522.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., & Picot, N. (2016). DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12(5), 1067-1090.
Pycroft, J., Abrell, J., & Ciscar, J.-C. (2016). The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment. Environmental and Resource Economics, 64(2), 225-253. https://doi.org/10.1007/s10640-014-9866-9
Reimann, L., Vafeidis, A. T., Brown, S., Hinkel, J., & Tol, R. S. (2018). Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nature Communications, 9(1), 1-11.
Salman, A. M., & Li, Y. (2018). Flood Risk Assessment, Future Trend Modeling, and Risk Communication: A Review of Ongoing Research. Natural Hazards Review, 19(3), 04018011. https://doi.org/doi:10.1061/(ASCE)NH.1527-6996.0000294
Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., . . . Brown, S. (2018). Future response of global coastal wetlands to sea-level rise. Nature, 561(7722), 231-234. https://doi.org/10.1038/s41586-018-0476-5
Spencer, T., Schuerch, M., Nicholls, R. J., Hinkel, J., Lincke, D., Vafeidis, A. T., . . . Brown, S. (2016). Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change, 139, 15-30. https://doi.org/10.1016/j.gloplacha.2015.12.018
Stammer, D., & Cazenave, A. (2017). Satellite altimetry over oceans and land surfaces. CRC press.
Wong, T. E., Bakker, A. M. R., Ruckert, K., Applegate, P., Slangen, A. B. A., & Keller, K. (2017). BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections. Geosci. Model Dev., 10(7), 2741-2760. https://doi.org/10.5194/gmd-10-2741-2017
Zhang, D., Shi, X., Xu, H., Jing, Q., Pan, X., Liu, T., . . . Hou, H. (2020). A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environmental Impact Assessment Review, 83, 106397. https://doi.org/10.1016/j.eiar.2020.106397