簡易檢索 / 詳目顯示

研究生: 林幸瑩
Lin, Hsing-Ying
論文名稱: 表面電漿共振生物感測器對人體血清中C型反應蛋白之偵測
Direct Detection of C-reactive Proteins in Human Serum Using Surface Plasmon Resonance Biosensing
指導教授: 張冠諒
Chang, Guan-Liang
陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 74
中文關鍵詞: 表面電漿共振生物感測器C型反應蛋白心血管疾病動脈血管硬化血清化學固定化方式ELISA
外文關鍵詞: ardiovascular disease, Surface plasmon resonance immunosensor, Atherosclerosis, Monoclonal antibody, C-reactive protein, Immobilization
相關次數: 點閱:168下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C型反應蛋白(CRP)為急性發炎時期表現蛋白,主要分為pCRP (MW=115 kD)及mCRP (MW=23 kD)兩種,醫學研究顯示CRP為心血管疾病及動脈血管硬化之重要指標蛋白,其中mCRP於近年來研究發現,相較於pCRP為更具活性之心血管疾病及動脈血管硬化誘發因子,因此量測血清中之CRP有助於及早判定發生心血管疾病之危險群,一般而言,ELISA為量測血清中CRP之常用方式,在此,利用表面電漿共振生物感測器,透過一連串的化學固定化方式,直接固定辨識抗體於感測器上,同時利用奈米強化表面電漿共振生物感測器提升感測器之靈敏度,欲達直接偵測血清中之pCRP及mCRP,利用表面電漿共振生物感測方式偵測擁有不需標定,及時偵測之優點。

    C-reactive protein (CRP) is one of the most characteristic acute-phase proteins. The serum presence of this hepatic ~115 kDa protein of five identical subunits (pCRP) accompanies several diseases, such as cardiovascular disease (CVD) and atherosclerosis. In recent years, the modified CRP (mCRP) which exhibits different biological activities in the body has been regarded as a more powerful inducer than pCRP. Therefore, investigating and measuring the contents of pCRP and mCRP is helpful to determine the risk of develop ing CVD and atherosclerosis in advance. Conventionally, these inflammatory proteins are detected by high-sensitivity ELISA in blood serum. Now we develop a new method, an SPR-based (surface plasmon resonance) immunosensor, based on monoclonal antibodies, C8, 8D8, and 9C9 that are immobilized on the sensor chip through different immobilization ways for real-time and label-free CRP identification and detection.

    Chapter 1 Introduction 1 1.1 Preface 1 1.2 Motives and Objectives 2 1.3 Literature Review 3 1.3.1 C-Reactive Proteins 3 1.3.2 Examinations of C-Reactive Proteins 10 1.4 Framework of This Thesis 13 Chapter 2 Surface Plasmon Resonance Biosensing 14 2.1 Surface Plasmons 14 2.2 System Configuration 21 2.3 Surface Plasmon Resonance Biosensors 24 2.3.1 Conventional Surface Plasmon Resonance Biosensors 24 2.3.2 Nanoparticle-Enhanced Surface Plasmon Resonance Biosensors 26 2.3.3 Sensitivity Comparisons 30 Chapter 3 Immobilization of Biomolecules 33 3.1 Background 33 3.2 Self-Assembled Monolayer 37 3.2.1 Preparation of Self-Assembled Monolayer 37 3.2.2 Characterization of Monolayers 40 3.2.3 Applications of Self-Assembled Monolayer 40 3.3 Antibody Immobilization 45 3.3.1 Characterization of C8, 8D8 and 9C9 45 3.3.2 Bioactivity of Immobilized Antibody on Different Self-Assembled Monolayer 56 Chapter 4 Clinical Detections of C-reactive Proteins 65 4.1 Examinations of Human Serum and Practical Problems 65 4.2 Direct Detections of C-Reactive Proteins Using SPR 65 4.3 Results and Discussion 65 Chapter 5 Conclusions 67 References 70

    [1] Eggins, B. R., Biosensors: An Introduction (1996).
    [2] Watts, H.J., Yeung, D., and Parkes, H., “Real-time detection and quantification of DNA hybridization by an optical biosensor”, Anal. Chem. 67, 4283–4289 (1995).
    [3] Silin, V., Weetall, H., and Vanderah, D.J., “SPR Studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs)”, J. Colloid. Interf. Sci. 185, 94–103 (1997).
    [4] Nelson, B.P., Grimsrud, T.E., Lies, M.R., Goodman, and R.M., Corn, R., “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption on DNA microarrays”, Anal. Chem. 73, 1–7 (2001).
    [5] F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing," Chemical Physics Letters, vol. 397, no. 4-6, pp. 429-434 (2004).
    [6] Ross R, “Atherosclerosis: an inflammatory disease”, N Engl J Med., vol.340, 115–126 (1999).
    [7] Peter Libby, “Inflammation in atherosclerosis”, Nature, vol.420, 868-874 (2002).
    [8] Stephen B. Kritchevsky, Matteo Cesari, and Marco Pahor, “Inflammatory markers and cardiovascular health in older adults”, Cardiovascular Research, vol.66, 265– 275 (2005).
    [9] Paul M. Ridker, MD, MPH, “High-sensitivity C-reactive protein potential adjunct for global risk assessment in the primary prevention of cardiovascular disease”, Circulation vol.103, 1813-1818 (2001).
    [10] Jiři Homola, “Present and future of surface plasmon resonance biosensors”, Anal Bioanal Chem, vol.377, 528–539 (2003).
    [11] 簡汎清, “超高解析度表面電漿共振生物感測器之研製”,國立中樣大學機械工程研究所碩士論文, 6月(2003).
    [12] E.Stenberg, B.Persson, H.Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” Journal of Colloid and Interface Science, vol.143, 513-526 (1991).
    [13] W.P. Hu, S.-J. Chen, K.-T. Huang, J.H. Hsu, W.Y. Chen, G.L. Chang, K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film”, Biosensors and Bioelectronics, vol.19, 1465–1471 (2004).
    [14] S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles”, Optics Letters, vol.29., 1390-1392 (2004).
    [15] Steven Black, Irving Kushner, and David Samols, “C-reactive Protein”, The Journal of Biological Chemistry, vol. 279, No. 47, 48487–48490 (2004).
    [16] Mark B Pepys and Gideon M. Hirschfield, “C-reactive protein: a critical update”, J. Clin. Invest., vol.111, 1805–1812 (2003).
    [17] Tarek Khreiss, Levente József, Lawrence A. Potempa, János G. Filep, “Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells”, Circulation., vol.109, 2016–2022 (2004).
    [18] Subodh Verma, Paul E. Szmitko, Edward T.H. Yeh, “C-Reactive Protein--- Structure Affects Function”, Circulation., vol.109, 1914 –1917 (2004).
    [19] The same as [17].
    [20] Raul Altman, “Risk factors in coronary atherosclerosis athero-inflammation: the meeting point”, Thromb J., 1:4 (2003).
    [21] Carlos A. Labarrere, Gary P. Zaloga, “C-reactive protein: from innocent bystander to pivotal mediator of atherosclerosis”, AmJ Med., vol.117, 499 –507 (2004).
    [22] The same as [18].
    [23] The same as [16].
    [24] Mark B. Pepys, Gideon M. Hirschfield et al., “Targeting C-reactive protein for the treatment of cardiovascular disease”, Nature, vol.440, 1217-1221 (2006).
    [25] Ridker PM, Rifai N, Rose L, et al., “Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events”, N Engl J Med., vol.347, 1557–1565 (2002).
    [26] Paul M. Ridker, Nader Rifai, Lynda Rose, Julie E. Buring, and Nancy R. Cook, “Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events”, N Engl J Med, vol.347, 1557-1565 (2002).
    [27] Yeh ET, Willerson JT., “Coming of age of C-reactive protein: using inflammation markers in cardiology”, Circulation., vol.107, 370–372 (2003).
    [28] Stephen B. Kritchevsky, Matteo Cesari, Marco Pahor, “Inflammatory markers and cardiovascular health in older adults”, Cardiovascular Research, vol.66, 265– 275 (2005).
    [29] M.A. Ribeiro, “Levels of C-reactive protein in serum samples from healthy children and adults in São Paulo, Brazil”, Brazilian Journal of Medical and Biological Research, vol.30, 1055-1059 (1997).
    [30] http://www.mbl.co.jp/e/diagnostics/product/method.html
    [31] Nader Rifai, Russell P. Tracy, and Paul M. Ridker, “Clinical efficacy of an automated high-sensitivity C-reactive protein assay”, Clinical Chemistry, vol.45 2136–2141 (1999).
    [32] Eric Kuhn, Jiang Wu, Johann Karl, Hua Liao, Werner Zolg and Brad Guild, “Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards”, Proteomics, vol.4, 1175–1186 (2004).
    [33] John Davies, “Surface analytical techniques for probing biomaterial processes”, CRC Press. Inc. (1996).
    [34] Heinz Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer-Verlag Berlin Heidelberg New York (1988).
    [35] The same as [11].
    [36] Jir'ı´ Homola, Sinclair S. Yee, Gu¨nter Gauglitz, “Surface plasmon resonance sensors: review”, Sensors and Actuators B 54, 3–15 (1999).
    [37] V. Owen, “Real-time optical immunosensors – a commercial reality,” Biosensors & Bioelectronics, 12, No.1 (1997).
    [38] F.-C. Chien, S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes”, Biosensors and Bioelectronics, vol. 20, 633–642 (2004).
    [39] The same as [36].
    [40] Hongxing Xu and Mikael Ka¨ll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors”, Sensors and Actuators B, vol.87, 244–249 (2002).
    [41] P. -T. Leung, Denise Pollard-Knight, Gordon P. Malan, and Martin F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor”, vol.22, 175-180 (1994).
    [42] K.C. Lee, S.T. Pai, Y.C. Chang, M.C. Chen, W.-H. Li, “Optimum massthickness of Ag-nanoparticle film for surface enhanced Raman scattering”, Materials Science and Engineering B, vol.52, 189–194 (1998).
    [43] Gregory Kalyuzhny, Alexander Vaskevich, Marie Anne Schneeweiss, Israel Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films”, Chemistry-A European Journal, vol.8, 3849-3857 (2002).
    [44] D. Kambhampati, P. E. Nielsen, and W. Knoll, “Investigating the kinetics of DNA-DNA and PNA-DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy”, Biosens Bioelectron., vol.16, 1109-18 (2001).
    [45] J. C. Maxwell-Garnett, Philos. Trans. R Soc. London, vol.203, 385 (1904).
    [46] T. Ung, L. M. Liz-Marzan, and P. Mulvaney, Colloids Surf. A vol. 202, 119 (2002).
    [47] J.C. Pyun, S.D. Kim, J.W. Chung, “New immobilization method for immunoaffinity biosensors by using thiolated proteins”, Analytical Biochemistry vol.34, 7227–233 (2005).
    [48] Jacob Piehler, Andreas Brecht, Kurt E. Geckeler and Gunter Gauglitz, “Surface modification for direct immunoprobes”, Biosensors & Bioelectronics, vol. 11, 579-590 (1996).
    [49] Richard F. Taylor, “Protein immobilization: fundamentals and applications”, Marcel Dekker, Inc. (1999).
    [50] Wayne M. Mullett, Edward P. C. Lai, and Jupiter M. Yeung, “Surface Plasmon Resonance-Based Immunoassays”, Methods, vol.22, 77-91 (2000).
    [51] http://www.ifm.liu.se/applphys/ftir/sams.html
    [52] Abraham Ulman, “Thin films: self-assembled monolayers of thiols”, vol.24, Academic Press Inc. (1998).
    [53] D.A. Puleo, R.A. Kissling, M.-S. Sheu, “A technique to immobilize bioactive proteins, includingbone morphogenetic protein-4 (BMP-4), on titanium alloy”, Biomaterials, vol.23, 2079–2087 (2002).
    [54] http://www.wellesley.edu/Biology/Concepts/Html/antibody.html
    [55] http://en.wikipedia.org/wiki/Antibody
    [56] Jong Seol Yuk and Kwon-Soo Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays”, Experimental and molecular medicine, vol. 37, 1-10 (2005).
    [57] Martin Linhult, Hans Kaaspar Binz, Mathias Uhlen and Sophia Hober, “Mutational analysis of the interaction between albumin-binding domain from streptococcal protein G and human serum albumin”, Protein Science, vol.11, 206–213 (2002).
    [58] Ulf Sjobring, Lars Bjorck, and William Kasternll, “Streptococcal Protein G---gene structure and protein binding properties”, The journalof Biological Chemistry, vol. 266, 399-405 (1991).
    [59] Emi Hifumi, Naruhiko Kubota et al., “Elimination of ingredients effect to improve the detection of anti HIV-1 p24 antibody in human serum using SPR apparatus”, Analytical Sciences, vol.18, 863-867 (2002).

    下載圖示 校內:立即公開
    校外:2006-08-15公開
    QR CODE