簡易檢索 / 詳目顯示

研究生: 楊智鈞
Yang, Chih-Chun
論文名稱: 快速微流體電化學傳感器用於人血清氯離子檢測
Rapid Microfluidic Electrochemical Biosensor for Human Serum Chloride Ion Detection
指導教授: 傅龍明
Fu, Lung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 62
中文關鍵詞: 微流體晶片電化學生醫傳感器氯離子
外文關鍵詞: Microfluidic chip, Electrochemical, Biosensor, Chloride ion
相關次數: 點閱:64下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氯離子為人血清細胞外含量最高的陰離子,負責人體機能的維持,若長期處於正常值範圍外,會因細胞滲透壓失衡導致腎功能異常。一般醫院的血液檢測檢測流程相當耗時,因此開發一套可自我檢測的氯離子傳感器,不但能大幅減少檢測耗時及花費,同時也方便隨時追蹤自身身體狀況。
    微流體電化學傳感器結合了電化學檢測方法及微流體系統的優點,有著快速、高靈敏度、高準確度的優勢,同時也僅需微量的樣品和反應試劑,是生醫傳感器的開發趨勢。本研究介紹了改性電極的製程,該電極可應用於病人血清氯離子的實際檢測。主要使用一般市售絲網印刷電極,在電極表面以電解沈積的方式使其吸附銀粒子,再透過施加時變電壓,使銀粒子與檢體中的氯離子產生反應,藉由偵測其反應過程的電流大小,回推氯離子濃度。
    接著利用參數優化的方式穩定改性電極的製程及降低檢測誤差,結合壓克力晶片進行水溶液及病人血清的檢測,於20例水溶液和40例洗腎病人血清中,與實際濃度值的相關係數分別為0.9989及0.9915,顯示以改性電極晶片的檢測方式,可實際應用於真實檢體的檢測,具有相當高的準確性及穩定度。

    Chloride ion is the highest anion content in the extracellular human serum. It mainly maintain proper water distribution, osmotic pressure and electrochemical neutrality of human cells. The rapid detection of chloride ion allows patients to aware of symptoms early and treat or control the disease.
    Microfluidic electrochemical biosensor combines the advantages of electrochemical detection methods and microfluidic system. It has the advantages of rapid detection, high sensitivity, high accuracy, low cost, and low sample volume required. In this study, the fabrication of modified electrodes for human chloride ion detection were introduced. By using electrodeposition method, we deposited the silver particles on the surface of commercial screen-printed carbon electrodes (SPCE). The presence of chloride ion in the solution and human serum cause a voltammetry signal which is related to the oxidation of silver to silver chloride. The signal correlates linearly with the concentration of chloride ion from 1 mM to 120 mM in solution, 1 mM to 60 mM in human serum, respectively.
    In order to verify the silver particles modified electrode biosensor, we detected 20 solutions of different chloride ion concentration and 40 patients’ serum samples. The results of detection compared with real values and National Cheng Kung University Hospital results. The correlation coefficients are 0.9989 in solution, 0.9915 in patients’ serum which show that the modified electrodes can be applied on solution and serum chloride ion detection.

    中文摘要 I 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第1章 緒論 1 1.1 研究動機 1 1.2 慢性腎臟疾病 2 1.3 電化學之發展 5 第2章 文獻回顧 10 2.1 微流體紙基晶片 10 2.2 微流體紙基晶片之發展 10 2.3 絲網印刷電極 15 第3章 實驗與方法 20 3.1 儀器與軟體 20 3.2 藥品製備 25 3.3 實驗架構 27 第4章 結果與討論 32 4.1 三電極大系統實驗 32 4.2 電極改性之參數優化 34 4.3 水溶液氯離子濃度檢測 39 4.4 人工血清氯離子濃度檢測 44 4.5 真實血清氯離子檢測 50 第5章 結論與展望 54 5.1 結論 54 5.2 展望 55 參考文獻 56 附錄 62

    [1] 行政院衛生署, "108年主要死因分析," 2018.
    [2] 許志成, 臺灣慢性腎臟病臨床診療指引專書. 國家衛生研究院, 2015.
    [3] V. Jha, G. Garcia-Garcia, K. Iseki, Z. Li, S. Naicker, B. Plattner, R. Saran, A. Y.-M. Wang, and C.-W. Yang, "Chronic kidney disease: global dimension and perspectives," The Lancet, vol. 382, no. 9888, pp. 260-272, 2013.
    [4] 黃智英 and 楊郁, "慢性腎臟病衛教簡介," 臺灣腎臟護理學會雜誌, vol. 3, no. 2, pp. 81-87, 2004.
    [5] M. Panteghini, R. Bonora, A. Malchiodi, and M. Calarco, "Evaluation of the direct potentiometric method for serum chloride determination—comparison with the most commonly employed methodologies," Clinical Biochemistry, vol. 19, no. 1, pp. 20-25, 1986.
    [6] M. Khatri, J. Zitovsky, D. Lee, K. Nayyar, M. Fazzari, and C. Grant, "The association between serum chloride levels and chronic kidney disease progression: a cohort study," BMC Nephrology, vol. 21, pp. 1-10, 2020.
    [7] R. Schoenfeld and C. Lewellan, "A colorimetric method for determination of serum chloride," Clinical Chemistry, vol. 10, no. 6, pp. 533-539, 1964.
    [8] M. Rahbar, B. Paull, and M. Macka, "Instrument-free argentometric determination of chloride via trapezoidal distance-based microfluidic paper devices," Analytica Chimica Acta, vol. 1063, pp. 1-8, 2019.
    [9] G. Dimeski and R. Barnett, "Effects of total plasma protein concentration on plasma sodium, potassium and chloride measurements by an indirect ion selective electrode measuring system," Crit Care Resusc, vol. 7, no. 1, pp. 12-15, 2005.
    [10] J. L. Grodin, J. Simon, R. Hachamovitch, Y. Wu, G. Jackson, M. Halkar, R. C. Starling, J. M. Testani, and W. W. Tang, "Prognostic role of serum chloride levels in acute decompensated heart failure," Journal of the American College of Cardiology, vol. 66, no. 6, pp. 659-666, 2015.
    [11] S. Mandai, E. Kanda, S. Iimori, S. Naito, Y. Noda, H. Kikuchi, M. Akazawa, K. Oi, T. Toda, and E. Sohara, "Association of serum chloride level with mortality and cardiovascular events in chronic kidney disease: the CKD-ROUTE study," Clinical and Experimental Nephrology, vol. 21, no. 1, pp. 104-111, 2017.
    [12] B. Suetrong, C. Pisitsak, J. H. Boyd, J. A. Russell, and K. R. Walley, "Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients," Critical Care, vol. 20, no. 1, pp. 1-8, 2016.
    [13] E. W. Weisstein, Eric Weisstein's world of science. Wolfram Research, 2003.
    [14] 藤. 相. 井上徹, 电化学测定方法. 北京大學出版社, 1995.
    [15] J. Wang, Analytical Electrochemistry, 2nd ed. John Wiley & Sons, Inc., 2001.
    [16] S. Rajendrachari, "Investigation of electrochemical pitting corrosion by linear sweep voltammetry: A fast and robust approach," in Voltammetry: IntechOpen, 2018.
    [17] D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)," Analytical Chemistry, vol. 70, no. 23, pp. 4974-4984, 1998.
    [18] R. Müller and D. Clegg, "Automatic paper chromatography," Analytical Chemistry, vol. 21, no. 9, pp. 1123-1125, 1949.
    [19] J. Comer, "Semiquantitative specific test paper for glucose in urine," Analytical Chemistry, vol. 28, no. 11, pp. 1748-1750, 1956.
    [20] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low‐volume, portable bioassays," Angewandte Chemie, vol. 119, no. 8, pp. 1340-1342, 2007.
    [21] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences, vol. 105, no. 50, pp. 19606-19611, 2008.
    [22] H. Xu, X. Mao, Q. Zeng, S. Wang, A.-N. Kawde, and G. Liu, "Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis," Analytical Chemistry, vol. 81, no. 2, pp. 669-675, 2009.
    [23] Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, "Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay," Electrophoresis, vol. 30, no. 9, pp. 1497-1500, 2009.
    [24] A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, "Diagnostics for the developing world: microfluidic paper-based analytical devices," Analytical Chemistry, vol. 82, pp. 3-10, 2010.
    [25] D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, "Recent developments in paper-based microfluidic devices," Analytical Chemistry, vol. 87, no. 1, pp. 19-41, 2015.
    [26] Z. Zhong, Z. Wang, and G. Huang, "Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices," Microsystem Technologies, vol. 18, no. 5, pp. 649-659, 2012.
    [27] E. M. Fenton, M. R. Mascarenas, G. P. López, and S. S. Sibbett, "Multiplex lateral-flow test strips fabricated by two-dimensional shaping," ACS applied Materials & Interfaces, vol. 1, no. 1, pp. 124-129, 2009.
    [28] Y. Lu, W. Shi, J. Qin, and B. Lin, "Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing," Analytical Chemistry, vol. 82, no. 1, pp. 329-335, 2010.
    [29] T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, "Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping," Talanta, vol. 85, no. 5, pp. 2587-2593, 2011.
    [30] X. Li, J. Tian, G. Garnier, and W. Shen, "Fabrication of paper-based microfluidic sensors by printing," Colloids and surfaces B: Biointerfaces, vol. 76, no. 2, pp. 564-570, 2010.
    [31] A. K. Ellerbee, S. T. Phillips, A. C. Siegel, K. A. Mirica, A. W. Martinez, P. Striehl, N. Jain, M. Prentiss, and G. M. Whitesides, "Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper," Analytical Chemistry, vol. 81, no. 20, pp. 8447-8452, 2009.
    [32] H. Noh and S. T. Phillips, "Fluidic timers for time-dependent, point-of-care assays on paper," Analytical Chemistry, vol. 82, no. 19, pp. 8071-8078, 2010.
    [33] J. Yu, L. Ge, J. Huang, S. Wang, and S. Ge, "Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid," Lab on a Chip, vol. 11, no. 7, pp. 1286-1291, 2011.
    [34] H. Zhang, Z. Zhao, Z. Lei, and Z. Wang, "Sensitive detection of polynucleotide kinase activity by paper-based fluorescence assay with λ exonuclease assistance," Analytical Chemistry, vol. 88, no. 23, pp. 11358-11363, 2016.
    [35] W. Dungchai, O. Chailapakul, and C. S. Henry, "Electrochemical detection for paper-based microfluidics," Analytical Chemistry, vol. 81, no. 14, pp. 5821-5826, 2009.
    [36] Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, and G. M. Whitesides, "Electrochemical sensing in paper-based microfluidic devices," Lab on a Chip, vol. 10, no. 4, pp. 477-483, 2010.
    [37] J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen, "Electrogenerated chemiluminescence detection in paper-based microfluidic sensors," Analytical Chemistry, vol. 83, no. 4, pp. 1300-1306, 2011.
    [38] Q.-M. Feng, J.-B. Pan, H.-R. Zhang, J.-J. Xu, and H.-Y. Chen, "Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker," Chemical Communications, vol. 50, no. 75, pp. 10949-10951, 2014.
    [39] S. Cinti, L. Fiore, R. Massoud, C. Cortese, D. Moscone, G. Palleschi, and F. Arduini, "Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat," Talanta, vol. 179, pp. 186-192, 2018.
    [40] O. D. Renedo, M. Alonso-Lomillo, and M. A. Martinez, "Recent developments in the field of screen-printed electrodes and their related applications," Talanta, vol. 73, no. 2, pp. 202-219, 2007.
    [41] J.-Y. Choi, K. Seo, S.-R. Cho, J.-R. Oh, S.-H. Kahng, and J. Park, "Screen-printed anodic stripping voltammetric sensor containing HgO for heavy metal analysis," Analytica Chimica Acta, vol. 443, no. 2, pp. 241-247, 2001.
    [42] Y. S. Song, G. Muthuraman, Y. Z. Chen, C. C. Lin, and J. M. Zen, "Screen Printed Carbon Electrode Modified with Poly (L‐Lactide) Stabilized Gold Nanoparticles for Sensitive As (III) Detection," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 18, no. 18, pp. 1763-1770, 2006.
    [43] Ł. Tymecki, E. Zwierkowska, and R. Koncki, "Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing," Analytica Chimica Acta, vol. 538, no. 1-2, pp. 251-256, 2005.
    [44] J. Razumiene, A. Vilkanauskyte, V. Gureviciene, J. Barkauskas, R. Meskys, and V. Laurinavicius, "Direct electron transfer between PQQ dependent glucose dehydrogenases and carbon electrodes: An approach for electrochemical biosensors," Electrochimica Acta, vol. 51, no. 24, pp. 5150-5156, 2006.
    [45] X. Ke, "Micro-fabricated electrochemical chloride ion sensors: From the present to the future," Talanta, vol. 211, p. 120734, 2020.
    [46] L. Trnkova, V. Adam, J. Hubalek, P. Babula, and R. Kizek, "Amperometric sensor for detection of chloride ions," Sensors, vol. 8, no. 9, pp. 5619-5636, 2008.
    [47] M.-H. Chiu, W.-L. Cheng, G. Muthuraman, C.-T. Hsu, H.-H. Chung, and J.-M. Zen, "A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples," Biosensors and Bioelectronics, vol. 24, no. 10, pp. 3008-3013, 2009.
    [48] L. Chu and X. Zhang, "Electrochemical detection of chloride at the multilayer nano-silver modified indium-tin oxide thin electrodes," Journal of Electroanalytical Chemistry, vol. 665, pp. 26-32, 2012.
    [49] H. S. Toh, C. Batchelor-McAuley, K. Tschulik, and R. G. Compton, "Electrochemical detection of chloride levels in sweat using silver nanoparticles: a basis for the preliminary screening for cystic fibrosis," Analyst, vol. 138, no. 15, pp. 4292-4297, 2013.
    [50] J. Bujes-Garrido and M. Arcos-Martínez, "Development of a wearable electrochemical sensor for voltammetric determination of chloride ions," Sensors and Actuators B: Chemical, vol. 240, pp. 224-228, 2017.
    [51] J. Bujes-Garrido and M. J. Arcos-Martínez, "Disposable sensor for electrochemical determination of chloride ions," Talanta, vol. 155, pp. 153-157, 2016.
    [52] J. Bujes-Garrido, D. Izquierdo-Bote, A. Heras, A. Colina, and M. Arcos-Martínez, "Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions," Analytica Chimica Acta, vol. 1012, pp. 42-48, 2018.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE