簡易檢索 / 詳目顯示

研究生: 柯宗良
Ko, Tsung-Lien
論文名稱: 波函數的統計力學詮釋
Statistical Interpretation of Wave Function
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 隨機控制最佳導引量子軌跡波函數統計力學
外文關鍵詞: Stochastic Control, Optimal Guidance, Quantum Trajectory, Pilot Wave, Wave Function, Statistic mechanics
相關次數: 點閱:142下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機率理論與軌跡理論是以不同觀點描述量子運動。機率論假設一個觀察者站在一個固定的空間點不動,觀察粒子通過此點的頻率。軌跡理論描述的是觀察者跟隨粒子移動,隨著時間不同,會有不同的粒子軌跡留下。隨著以軌跡觀點來描述量子系統的重要性日益增加,本論文希望能統整以統計學為基礎的軌跡觀點和複數力學框架下所建構的複數軌跡。其中,複數力學的量子軌跡,是由隨機最佳控制理論所推導出來的隨機運動方程式。而統計力學的量子軌跡隨機運動方程式,是由佛可-普朗克方程所求得。本文會以兩種力學所推導的隨機運動方程式,和量子系統機率密度進行比較。並根據波爾的相對性原理,當量子數趨近於無窮大時(n→∞時),量子現象必須收斂到古典力學的巨觀行為。本論文發現複數力學的隨機運動方程式能描述相對性原理,而統計力學當n→∞的結果,並不能遵循牛頓運動軌跡的分布。這結果也證明了,粒子實際移動在複數空間之內,而不是我們通常認為的實數空間。

    The probability theory and trajectory theory describe the quantum motion with different viewpoints. The probabilism assumes a viewer not moving along with a particle but standing on a fixed spatial point, who observes the frequency at which different particles pass him. The trajectory theory describes a viewer moving along with a particle, who passes different spatial points at different times. With the increasing importance of the trajectory-based interpretation of quantum mechanics, this thesis aims to integrate the trajectory view point with the statistical viewpoint under the framework of complex mechanics. The quantum trajectories in complex mechanics are derived by the theory of optimal stochastic control, which are complex random trajectories. On the other hand, the quantum trajectories in statistical mechanics are derived by the Fokker-Planck equation, which are real random trajectories. In this thesis, both random trajectories solved from complex mechanics and statistical mechanics are discussed, and the convergence of their spatial distributions to the probability density function is compared. According to the Bohr’s corresponding principle, the quantum behavior, as quantum number approaches to infinity (n→∞), must converge to the macroscopic behavior described by classical mechanics. The major finding of this thesis is that only the complex random trajectories satisfy the Bohr’s corresponding principle, while the real trajectories solved from statistical mechanics fail to follow the Newtonian trajectories as n→∞. This result provides obvious evidence that particles actually move in a complex space, but not in a real space as we think commonly.

    中文摘要 I Statistical Interpretation of Wave Function III SUMMARY III INTRODUCTION IV MATRERIALS AND METHODS V RESULTS AND DISCUSSION V CONCLUSION VII 誌謝 VIII 目錄 IX 圖目錄 XII 符號表 XVI 第一章 緒論 1 1.1背景及文獻回顧 1 1.2研究目標 5 1.3各章概述 6 第二章 不同觀點下的量子系統 8 2.1 布朗隨機運動 8 2.2 動態規劃原理求解量子軌跡最佳導引律 13 2.3 複數力學隨機運動方程式 18 2.4統計力學隨機運動方程式 21 第三章 不同力學下的量子軌跡分布統計 25 3.1 相干態高斯波包的量子運動 25 3.1.1 複數力學的統計分布結果 26 3.1.2 統計力學的統計分布結果 34 3.2 自由型高斯波包的量子運動 36 3.2.1 複數力學的統計位置分布 37 3.2.2 統計力學的位置分布 39 3.3 不同初始點分布下的量子軌跡統計 40 3.3.1 常態分布 41 3.3.2 均勻分布 43 3.3.3 兩種力學對於數值積分的討論 45 第四章 軌跡複數化的必要性 51 4.1量子簡諧振子機率密度 51 4.1.1量子簡諧振子n = 0 52 4.1.2量子簡諧振子n = 1 54 4.1.3量子簡諧振子n = 2 60 4.1.4量子簡諧振子n = 3 71 4.2微觀和巨觀的統整 77 4.2.1古典機率密度 78 4.2.2複數力學詮釋微觀到巨觀的變化 80 第五章 結論 88 5.1結果與討論 88 5.2未來研究方向 90 參考文獻 91

    [1] Aris, E., “Vectors, Tensors and the Basic Equations of Fluid Mechanics”, Englewood Cliffs, NJ, 1962.
    [2] Arnold, L., “Stochastic Differential Equations – Theory and Applications,” John Wiley & Sons, New York, 1974.
    [3] Ben-Asher, J. Z. and Yaesh, I., “Advances in Missile Guidance Theory,” AIAA Press, Washington DC, 1998.
    [4] Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables,” Physical Review, 85, 1952, pp.166-193.
    [5] Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I”, Phys. Rev. 85, 1952,166-179.
    [6] Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. II”, Phys. Rev. 85, 1952, 180-193.
    [7] B.Schutz, “Geometrical Methods of Mathematical Physics”, Cambridge University Press, Cambridge, UK, 1995.
    [8] Chou, C.C., Wyatt, R.E., “Trajectory Approach to Quantum Wave packet Dynamics: The Correlated Derivative Propagation Method”, Chem. Phys.Lett.500, 2010, 342-346.
    [9] Chou, C.C., Wyatt, R.E., “Quantum Trajectories in Complex Space”, Phys. Rev. A 76, 2007, p012-115.
    [10] Comisar, G. G., “Brownian-Motion Model of Nonrelativistic Quantum Mechanics,” Physical Review, 138, 1965, 1332-1337.
    [11] Cao, J. and and Gregory A. Voth “The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties,” Chemical Physics, Vol. 100 Issue 7, 1994, p5106-5107.
    [12] Creutz, M. and Freedman, B., “A Statistical Approach to Quantum Mechanics,” Ann. Phys. 132, 1981, pp.427-462.
    [13] Drolshagen, G., Heller, E. J.,“A Wavepacket Approach to Gas-surface Scattering: Application to Surfaces with Imperfections”, Elsevier, New York, 1983.
    [14] Faisal, F.H.M., Schwengelbeck, U., “Unified Theory of Lyapunov Exponents and a Positive Example of Deterministic Quantum Chaos”, Phy. Lett. A 207, 1995, 31-36.
    [15] Gogolin, C., ” Pure State Quantum Statistical Mechanics,” Master thesis, Cornell University, 2010, pp61.
    [16] Gibbs, Josiah Willard, “Elementary Principles in Statistical Mechanics,” Charles Scribner's Sons, 1902, pp3-13.
    [17] Huang, Y. C., Ma, F. C., Zhang, N. “Generalization Of Classical Statistical Mechanics To Quantum Mechanics And Stable Property Of Condensed Matter” Modern Physics Letters B. B18, 2004, 1367-1377.
    [18] Leo P. Kadanoff. “Statistical Physics: Statics, Dynamics and Renormalization,” World Scientific, 2000.
    [19] McCullough, E.A., Wyeth, R.E., “Quantum Fluid Dynamics in the Lagrangian Representation and Applications to Photo Dissociation Problems”, J. Chem. Phys. 51, 1961, 1253-1969.
    [20] Matsubara, T., “A New Approach to Quantum-Statistical Mechanics” Progress of Theoretical Physics, Vol. 14, 1955, 351-353.
    [21] Nelson, E., “Derivation of the Schrödinger Equation from Newtonian Mechanics,” Physical Review, 150, 1966, pp. 1079-1085.
    [22] Petroni, N. C., De Martino S., De Siena, S., Illuminati, F., “Controlled Quantum Evolutions and Transitions,” Journal of Physics A, Vol. 32, 1999, 7489-7508.
    [23] Yang, C. D., Chen, H. Y., “Three-Dimensional Nonlinear H Guidance Law and H Based Pursuit – Evasion Game,” International Journal of Robust and Nonlinear Control, Vol. 11, 2001, pp. 109 -129.
    [24] Yang, C. D., and Chen, H. Y., “Nonlinear H Robust Guidance Law for Homing Missiles,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 21, 1998, pp. 882-890.
    [25] Yang, C. D., Yang, C. C., “Optimal Pure Proportional Navigation for Maneuvering Targets,” IEEE Trans. Aerospace and Electronics, Vol. 33, 1997, pp. 949-957.
    [26] Yang, C. D. and Yang, C. C., “A Unified Approach to Proportional Navigation,” IEEE Trans. on Aerospace and Electronics, Vol. 33, 1997, pp. 557-567.
    [27] Yang, C. D. and Cheng, L. L., “Optimal Guidance Law in Quantum Mechanics”, Annals of Physics, Vol. 338,2013, pp.167-185.
    [28] Zarchan, P., Tactical and Strategic Missile Guidance, AIAA Press, Washington DC, 1994.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE