簡易檢索 / 詳目顯示

研究生: 吳尚昇
Wu, Shang-shung
論文名稱: 以寬能隙高分子摻雜在奈米顆粒的發光二極體
Wide Band gap Polymer doped Nanoparticle Based Light-Emitting Diode
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 107
中文關鍵詞: 有機高分子二極體
外文關鍵詞: PVK, PLED, PFO, CdSe/ZnS, ZnO
相關次數: 點閱:57下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於資訊產業的發展,人們對於顯示器的需求日漸增高。而有機高分子發光二極體(polymer light-emitting diode(PLED))則因為他在顯示器上的應用而廣受注目,它具有低製造成本、製程容易、輕、薄、和可製作於大面積面板及可撓是基板等優點。然而,有機高分子材料容易受環境中的水氣、氧氣的影響,進而影響其元件的特性及壽命,而限制了其在商業化的應用,因此目前有許多研究均致力於探討如何改善有機高分子二極體的特性及缺陷的研究。在此篇論文中,我們將不同比例的ZnO奈米顆粒加入到PVK發光層當中,並且也以不同比例的CdSe/ZnS量子點加入PFO發光層當中。然而我們將分成兩大部分去討論這些結果。然後我們分別去探討ZnO和CdSe/ZnS對於PLED的影響。
    首先我們製作兩層結構的有機高分子二極體(ITO/PEDOT:PSS/Composite layer/Ca/Al)。以導電薄膜PEDOT:PSS 為電洞傳輸層(HTL),厚度為40nm,Composite layer為各種不同比例的PVK與ZnO,PFO與CdSe/ZnS量子點混溶後旋轉塗佈而成的發光層,而Ca和Al則分別為陰極。
    經由AFM的量測我們明顯的發現氧化鋅奈米顆粒的加入增加了發光層的粗糙度,並解隨著氧化鋅奈米顆粒的比例增加而粗糙度越大。而由AFM 3D及TEM的分析,也可以證實氧化鋅奈米顆粒確實有加入發光層中,並且隨著比例的減少,其聚集成塊的現象也隨之減少。另外,從元件的電及光特性的探討,我們可以得到最好的PVK對氧化鋅奈米顆粒(ZnO)和PFO對量子點(CdSe/ZnS)的濃度比例都是以10:1,其的確達到了增加了亮度及電流效率。第一部份有五個小部份,我們得到最好的結構是 (ITO/PEDOT:PSS/PVK:ZnO/PEO/Ca/Al),然而PEO主要的功能為電子傳輸層。它的turn-on voltage是6.3V、最大亮度是743 、最大效率是0.35 。然而第二部份有兩個小部份。第一個小部分主要是使用純PFO材料,將它找到最好的參數。它最好的濃度是3%,它的turn-on voltage是6.2V,最大亮度是9830 ,最大效率是5.18 。第二個小部份是使用上一個實驗最好的參數加入量子點材料(CdSe/ZnS)。我們希望PFO材料能夠能量轉移給量子點(CdSe/ZnS)。在EL和PL圖上可以看出,這個結果正確的。然而第二個小部份最好的顯示出,它的濃度比最好是10:1,元件顯示出turn-on voltage是26V,最大亮度是970cd/m2 ,最大效率是1.53cd/A 。

    By the development of the intelligent industry, people have more require for monitor. However, polymer light-emitting diodes (PLED) have attracted much attention because of their potential applications in information display. They have some advantages such as low fabrication cost, easy processing, lightweight, and can fabricated on large area display and flexible substrate…,etc. Therefore, the conjugated polymer is easy to affect by the moisture and oxygen in environment, and then influence the performance and life time to limit its applications in commercial, so there are many researches discussing to improve the performance of PLED. In this thesis, we composite different proportion of ZnO nanoparticle acceded PVK emissive layer and different proportion of CdSe/ZnS quantum Dots acceded PFO emissive layer. However, we discussed these performances for two parts. Then we discussed
    ZnO nanoparticle and CdSe/ZnS quantum Dots for the PLEDs, respectively.
    In this work, the double layer structure had been made (ITO/PEDOT:PSS
    Composite layer/Ca/Al) .The PEDOT:PSS (40nm) was used as hole transport layer (HTL) and composite layer for used different weight ratio spin coated as emission layer (EML). However, the material of Ca and Al were used as cathode.
    We observed the roughness of emission layer increased when the ZnO nanoparticle composite with the proportion of ZnO nanoparticle increasing. By the analysis of SEMor TEM, we demonstrated that the phenomenon of cluster decrease as the reduction of proportion of ZnO. Both of the best proportion of PVK to ZnO and PFO to CdSe/ZnS are 10:1; It demonstrated the ZnO nanoparticle and CdSe/ZnS quantum Dots have the ability to improve the luminance and efficiency. The first part has five parts. We obtained the best structure. It was ITO/PEDOT:PSS/PVK:ZnO/PEO/Ca/Al. Therefore, the material of PEO is used as electron injection function. The turn-on voltage is 6.3V, the maximal luminance is 743 , and the maximal efficiency is 0.35 . Therefore, the second part has two parts. We must search the best parameter for pure PFO in first part. The best weight ratio is 3%wt. The performance of devices exhibited that turn-on voltage is 6.2V, the maximal luminance is 9830 , and the maximal efficiency is 5.18 . We used the best parameter in front of part into CdSe/ZnS quantum Dots in second part. We hoped that the material of PFO could energy transfer to CdSe/ZnS. The result is correct in figure of EL and PL. However, the best weight ratio of PFO:CdSe/ZnS is 10:1 in this part. The performance of devices exhibited that the turn-on voltage is 26V, the maximal luminance is 970cd/m2, and the maximal efficiency is 1.53cd/A .

    Abstract (in Chinese) ---------------------------------I Abstract (in English) ---------------------------------IV Acknowledgement----------------------------------------VII Contents-----------------------------------------------VIII Table Captions-----------------------------------------XII Figure Captions----------------------------------------XIII Chapter 1 Introduction---------------------------------1 1.1 Historical development of Organic EL device-------1 1.2 The advantages of OLEDs---------------------------2 1.3 Type of Electroluminescence ----------------------3 1.4 Organization of this thesis-----------------------5 Chapter 2 Basic Concepts and Device Operations of Thesis-7 2.1 Basic Properties of Organic Semiconductor---------7 2.1.1 Optical Properties------------------------------7 2.1.2 Charge Carrier Transport -----------------------8 2.1.3 Device Structures and Properties----------------11 2.2 Basic Concept of Nanocomposite Device-------------14 2.2.1 Mechanism for Nanocomposite Device--------------14 Chapter 3 Experiment and Measurement-------------------23 3.1 Introduction--------------------------------------23 3.1.1 Formation of polymer solution ------------------23 3.1.2 Formation of nanocomposite solution-------------24 3.2 Materials used in this experiment-----------------24 3.2.1 Anode, cathode, and polymer materials ----------24 3.3 Experiment procedures-----------------------------26 3.3.1 Substrate cleaning -----------------------------26 3.3.2 Fabrication of polymer layers and the cathode --27 3.4 Characteristic Measurement Methods----------------29 3.4.1 Current and Voltage Characteristics-------------29 3.4.2 Optical Measurements----------------------------29 3.5 Atomic Force Microscopy (AFM) measurements--------31 Chapter 4 Results and Discussions (1) -----------------40 4.1 Part I: The analysis of basic devices-------------40 4.1.1 Characteristics of pure PVK --------------------40 4.1.2 Discussion of part I ---------------------------41 4.1.3 Summary-----------------------------------------41 4.2 Part II: The method to improve efficiency --------41 4.2.1 Characteristics of device-----------------------42 4.2.2 Discussion of part II---------------------------43 4.2.3 Summary of part II------------------------------44 4.3 PLED base on nanocomposite layer to improve performance- ------------------------------------------44 4.3.1 Nanocomposite used Particulate Processing-------45 4.3.2 Characteristics of device III-------------------45 4.3.3 Discussion of part III--------------------------46 4.3.4 Summary of part III-----------------------------46 4.4 Part IV: To improve performance of device III-----46 4.4.1 Characteristics of device IV--------------------47 4.4.2 Discussion of part IV---------------------------48 4.4.3 Summary of part IV------------------------------48 4.5 Part V: improve performance of device IV ---------48 4.5.1 Characteristics of device V---------------------49 4.5.2 Discussion of part V----------------------------50 4.5.3 Summary of part V-------------------------------51 4.6 Measurements for Nanocomposite Film---------------51 4.6.1 Atomic Force Microscopic (AFM) Images-----------51 4.6.2 High-resolution Field-Emission Transmission Electron Microscopy; HR-TEM 2100 (TEM)-----------------52 4.6.3 Summary-----------------------------------------53 Chapter 5 Results and Discussions (2) -----------------80 5.1 Part 1: The analysis of basic devices-------------80 5.1.1 Characteristics of pure PFO (blue-268) ---------80 5.1.2 Discussion of part 1----------------------------82 5.1.3 Summary-----------------------------------------82 5.2 Part II : PLED base on CdSe/ZnS-------------------82 5.2.1 Characteristics of PFO doped CdSe/ZnS-----------82 5.2.2 Discussion of part II---------------------------84 5.2.3 Summary-----------------------------------------85 5.3 Atomic Force Microscopic (AFM) Images-------------85 Chapter 6 Conclusion-----------------------------------99 6.1 Conclusion----------------------------------------99 Chapter 7 Future Work----------------------------------101 Reference---------------------------------------------102

    [1]A.Bernanose,M.Comte,P.Vouaux,J.Chim.Phys.50,64,(1953).
    [2]A.Bernanose,P.Vouaux,J.Chim.Phys.50,261,(1953).
    [3]E.Gurnee,R.Fernandez,US Patent3 172 862,(1965).
    [4]W.Digby,M.Schadt,US Patent3 621 321,(1971).
    [5]A.Bernanose,M.Comte,P.Vouaux,J.Chim.Phys.(1953),50,64.
    [6]R.Partridge,Us Patent3 995 299,(1976).
    [7]D.Braun,A.Heeger,Appl.Phys.Lett.(1991),58,1982.
    [8]H.Radousky,A.Madden,K.Pakbaz,T.Hagler,H.Lee,H.Lorenzana,
    G.Fox,P.Elliker,Int.SAMPE Tech.Conf.(1995),27,1143.
    [9]Bernanose,A.,J.Chim.Phys.,53,369,1955.
    [10]Karl,N,In Defect Control in Semiconductors,Vol.2,K.Sum-
    ino,Ed.,North Holland,Amsterdam,1990,1725.
    [11]Pope,M. and Swenberg,C.E.,Electronic Processes in Organic Crystals,Clarendon Press,Oxford,1982.
    [12]Bernanose,A.B.,Comte,M.,and Vouaux,P.,J.Chim.Phts.,
    50,64,1953 [in French]
    [13]Goldman,A.G.,Kurik,M.V.,Viertzimakha,Ja.I.,and Korolko,
    B.N.,Zh.Prikl.Spektr.,14,235,1971[in Russian]
    [14]Namba,S.,Yoshizawa,M.,and Tamura,H.,Jpn.J.Appl.Phys.,
    28,439,1959 [in Japanese]
    [15]Pope,M.,Kallmann,H.P.,and Magnante,P.,J.Chem.Phys.,
    38,2042,1963.
    [16]Zvyagintsev,A.M.,Steblin,V.I.,and Tchilaya,G.s.,Zh.
    Prikl.Spektr.,13,165,1970.
    [17]Vityuk,N.W.and Mikho,V.V.,Fiz.Tehn.Poluprov.(Phys.Tech.
    Semicond.),6,1735,1972 [in Russian]
    [18]Steblin,V.I.,Zh.Prikl.Spektr.,19,724,1973 [in Russian]
    [19]Dubey,P.D.R.,Indian J.Phys.,52A,74,1978
    [20]Sinha,N.P.,Misra,Y.,Tripathi,L.N.,and Misra,M.,Phys.Stat.Sol. (a),59,101,1980.
    [21]Sinha,N.P.,Misra,Y.,Tripathi,L.N.,and Misra,M.,Solid
    state Commun.,39,89,1981.
    [22]Destriau,G.,J.Chim.Phys.,34,117,327,462,1937.
    [23]Destriau,G.,Philos.Mag.,38,774,880,1947.
    [24]Destriau,G. and Ivey,H.F.,Proc.IRE,43,1911,1955.
    [25]Fischer,A.G.,In Luminescence of Inorganic Solids,P.Goldberg,Ed.,Academic Press,New York,1966,chap.10.
    [26]Vereshchagin, I.K.,Electroluminescence of Crystals, Izd.Nauka,Moscow,1974 [in Russian]
    [27]Short,G. and Hercules,D.M.,J.Am.Chem.Soc.,87,1439,1965.
    Chapter Two
    [28]M.Pope and C.E.Swenberg.Electronic Processed in Organic Crystals.Clarendon Press,Oxford 1982.
    [29]N.karl,J.Marktanner,Mol.Cryst.Liq.Cryst.
    [30]N.Karl:Charge Carrier Mobility in Organic Crystals, in R.Far-chioni,G.Grosso(Eds.),Organic Electronic Materials,Spring 2001.
    [31]P.M.Borsenberger and D.S Weiss.Organic Photoreceptorss for Imag-ing Systems.M.Dekker,New York 1993.
    [32]W.Brutting,S.Berleb,A.Muckl,Organic Electronics 2,1 (2001).
    [33]J.C.Scott,J.Vac.Sci.Technol.A 21,521 (2003).
    [34]U.Wolf,V.I.Arkhipov,H.Bassler,Phys.Rev.B 59,7507(1999);ibid.59,7514(2001)
    [35]P.W.M.Blom,M.C.J.M.Vissenberg,Mater.Sci.Eng.27,53(2000).
    [36]M.ABaldo,S.R.Forrest,Phys.Rev.B 64,085201(2001).
    [37]H.Bassler,Phys.Stat.Sol. (b) 107,9(1981)
    [38]C.D.Dimitrakopoulos,P.R.L.Malenfant.Adv.Mater. 14,99(2002).
    [39]H.Klaul,M.Halik,U.Zschieschang,G.Schmid,C.Dehm,Appl.Phys.Lett.84,2673(2004).
    [40]T.W.Kelley.D.VMuyers,P.F.Baude,T.P.Smith,T.D.Jones,Mat.Res.
    Soc.Symp.Proc. 771,169(2003)
    [41]A.Moliton.Ion implantation doping of electroactive polymer and device fabrication. In J.R.Reynolds T.A.Skotheim,and R.L.Elsen-baumer(Eds.),Handbook of Conducting Polymers.Marcel Dekker,New York 1998.
    [42]M.Pfeiffer,K.Leo,X.Zhou,J.S.Huang,M.Hofmann,A.Werner,J.Blochwitz-Nimoth,Organic Electronics 4,89 (2003).
    [43]M.Gross,D.C.Muller,H.G.Nothofer,U.Scherf,D.Neher,C.Brauchle,K.Meerholz,Nature 405,661(2000).
    [44]M.A.Lampert and P.Mark,Current Injection in Solids,Academic Press,New York 1970.
    [45]M.A.Baldo,D.F.Obrien,Y.You,A.Shoustikov,S.Sibley,M.E.Thompson,S.R.Forrest,Nature 395,151(1998);S.R.Forrest,Organic Electronics 4,45(2003)
    [46]N.S.Sariciftci,L.Smilowitz,A.J.Heeger,F.Wudl,Science 258,1474(1992).
    [47]C.J.Brabec,N.S.Sariciftci,J.C.Hummelen,Adv.Funct.Mater.11,15(2001).
    [48]P.Peumans,S.Uchida,S.R.Forrest,Nature 425,158(2003)
    [49]G.Horowitz,Adv.Mater.10,365(1998).
    [50]G.H.Gelinck,et al.Nature Mater.3,106(2004).
    [51]A.Knobloch,A.Manuelli,A.Bernds,W.Clemens,J.Appl.Phys.96,2286(2004).
    [52]N.C.Greenham,P.Xiaogang,and A.P.Alivisatos,Phys.Rev.B 54,17628(1996).
    [53]G.Yu,J.Gao,J.C.Hummelen,F.Wuld,and A.J.Heeger,Science 270,1789(1995).
    [54]F.Hide,B.J.Schwartz,M.A.Diaz-Garcia,and A.J.Heeger,Chem.Phys.Lett.256,424(1996).
    [55]S.A.Carter,J.C.Scott,P.J.Brock,Appl.Lett.71(1997) 114.
    [56]Jong Hyeok Park, Yong Taik Lim, O Ok Park, Jai kyeong Kim,Jae-Woong Yu,and Young Chul Kim,Chen.Mater,16,688(2004)
    Chapter three
    [57]I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi,“Quantum dot bioconjugates for imaging, labeling and sensing,”Nature Mater., vol. 4, pp. 435–446, Jun. 2005.
    [58]D. Cui, J. Xu, S. Y. Xu, G. Paradee, B. A. Lewis, and M. D. Gerhold,“Infrared photodiode based on colloidal PbSe nanocrystal quantum dots,” IEEE Trans. Nanotechnology, vol. 5, no. 4, pp. 362–366, Jul.2006.
    [59]H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J.Huang, C. C.Yang, I. S. Liu, and W. F. Su, “White light generation with CdSe–ZnS nanocrystals coated on an InGaN–GaN quantum-well blue/green two-wavelength light-emitting diode,” IEEE Photon. Technol. Lett., vol. 18, no. 13, pp. 1430–1432, Jul. 1, 2006.
    [60]H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G.Bawendi,andM.F.Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,”J. Appl. Phys., vol. 83, no. 12, pp. 7965–7967, Jun. 1998.
    [61]Tzung-Fang Guo, Fuh-Shun Yang, Zen-Jay Tsai, Ten-Chin Wen, Sung-Nien Hsieh,and Yaw-Shyan Fu.Appl.Phys.Lett.87,013504 (2005).
    [62]Carrie Donley,Darren Dunphy,David Paine,Chet Carter,Ken Nebesny,Paul Lee,Dana Alloway,and Neal R.Armstrong,Langmuir,18 (2002)450-457.
    [63]S.K.So,W.K.Chio,C.H.Cheng,L.M.Leung,C.F.Kwong,Appl.Phys.A 68,(1999) 447-450.
    [64]T.P.Nguyena,S.A.de Vos,Appl.Surf.Sci.221(2004)330-339.
    [65]T.OYAMADA,C.MAEDA,H.SASABE and C.ADACHI,
    Jpn.J.Appl.Phys.PartII,42(2003)L 1535-L 1538.
    [66]C.Flueraru,S.Schrader,V.Zauls,H.Motschmann,B.Stiller,R.Kiebooms, Synth.Met.,111-112(2000)603-606.
    [67]M.Yan,L.J.Rothberg,F.Papadimitrakopoulos,M.EGalvin,Phys.Rev.Lett.,73(1994)744.
    Chapter Four
    [68]B.B.Mandelbrot,The Fractal Geometry of Nature,(San Francisco:W.H.Freeman 1982).

    下載圖示 校內:2011-06-27公開
    校外:2011-06-27公開
    QR CODE