| 研究生: |
黃俊豪 Huang, Chun-Hao |
|---|---|
| 論文名稱: |
工業4.0評價模式之規劃 Design of An Industry 4.0 Assessment Model |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 工業 4.0 、電子化 、精實管理 、自動化 、物聯網 、巨量資料 、網宇實體 |
| 外文關鍵詞: | Industry 4.0, e-Business, Lean Production, Automation, Internet of Things, Big Data, Cyber-Physical System |
| 相關次數: | 點閱:165 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣傳統產業近年來遭遇到的問題,主要肇因人口越來越少,年輕人 不願意到傳統產業上班,導致傳統產業現場缺工嚴重。政府因應世界潮流 推動了生產力 4.0 政策,以搶救台灣傳統產業發展。不過若沒有適當的配 套,工業 4.0 將淪為口號,很難實際執行及推動。
本研究整合國內外關於相關文獻,最後以工業局企業電子化評量量表 為基礎,發展工業 4.0 評量表,診斷企業電子化/自動化程度,提出提昇企 業電子化/自動化之方案,並探討工業 4.0 五項主要技術精實管理、智慧機 械、物聯網、巨量資料及網宇實體對企業關鍵作業流程之重要程度及導入 時不同技術間之關聯性。
本問卷發放對象為 150 家製造業之管理者。分析結果顯示公司自動化 及電子化程度越高,越有意願導入工業 4.0,且公司營業額與其導入工業 4.0 的意願有正向關係。針對電子化/自動化程度較高的企業進行進一步分 析發現,在各項技術中,公司導入意願最高的為智慧機械占 100%,物聯網 次之為 87%,導入意願最低的為網宇實體占 18%。顯見智慧機械及物聯網 可做為導入工業 4.0 之開端。
Traditional industries in Taiwan encountered some serious problems in recent years, largely due to the shortage of workers. Industry 4.0 is considered as the global trend and can provide solutions in regarding workers shortage for traditional industries. However, if there are no appropriate metrics, polices to promote Industry 4.0 is simply a slogan and is difficult to execute. This work integrated related literature and metrics about e-Business from Industrial Development Bureau, to develop a scorecard for diagnosis of the degree of Industry 4.0 and to explore the five main facets including lean production, intelligent manufacturing, Internet of things, big data and cyber-physical system which might be critical to develop Industry 4.0.
The developed questionnaire (scorecard) had issued to 150 managers in manufacturing industry. The results show that there is a high degree relationship between e-business as well as automation and intention to implement Industry 4.0. There is positive relationship between enterprise turnover rate and the intention to implement Industry 4.0 as well. For the major facets of Industry 4.0, intelligent manufacturing has strongest relationship (100%), following by Internet of things (87%), and the lowest one is cyber-physical system (about 18%). The beginning step to implement Industry 4.0 is therefore clear to the practitioners.
Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44.
BusinessNext. (2015). Retrieved from http://www.bnext.com.tw/article/view/id/35807
Gorecky, D., Schmitt, M., Loskyll, M., & Zuhlke, D. (2014). Human-machine-interaction in the industry 4.0 era. Paper presented at the Industrial Informatics (INDIN), 2014 12th IEEE International Conference on.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.
Haddara, M., & Elragal, A. (2015). The Readiness of ERP Systems for the Factory of the Future. Procedia Computer Science, 64, 721-728.
Hermann, M., Pentek, T., & Otto, B. (2015). Design principles for Industrie 4.0 scenarios: a literature review. Technische Universität Dortmund, Dortmund.
Kolberg, D., & Zühlke, D. (2015). Lean automation enabled by industry 4.0 technologies. IFAC-PapersOnLine, 48(3), 1870-1875.
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
Lee, J., Kao, H.-A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP, 16, 3-8.
LOJKA, T., BUNDZEL, M., & ZOLOTOVÁ, I. (2015). Industrial gateway for data acquisition and remote control. Acta Electrotechnica et Informatica, 15(2), 43-48.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity.
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. Boston Consulting Group.
Rosenberg, E., Haeusler, M. H., Araullo, R., & Gardner, N. Smart Architecture-Bots and Industry 4.0 Principles for Architecture.
Vyatkin, V., Salcic, Z., Roop, P. S., & Fitzgerald, J. (2007). Now That's Smart! Industrial Electronics Magazine, IEEE, 1(4), 17-29.
Wan, J., Cai, H., & Zhou, K. (2015). Industrie 4.0: enabling technologies. Paper presented at the Intelligent Computing and Internet of Things (ICIT), 2014 International Conference on.
Womack, J. P., & Jones, D. T. (2010). Lean thinking: banish waste and create wealth in your corporation: Simon and Schuster.
Womack, J. P., Jones, D. T., & Roos, D. (1990). Machine that changed the world: Simon and Schuster.
火紅的名詞物聯網到底是什麼. (2014). Retrieved from http://www.cw.com.tw/article/article.action?id=5063131
行政院. (2015). 生產力4.0科技發展策略會議.
吳萬益. (2000). 企業研究方法. 華泰圖書出版公司.
陳仲宜、盧素涵. (2013). 智慧自動化服務產業之傳統製造應用商機探討. Retrieved from http://www2.itis.org.tw/Default.aspx
黃重球. (2004). 產業電子化白皮書.