| 研究生: |
蕭雅馨 Hsiao, Ya-Hsin |
|---|---|
| 論文名稱: |
電漿子拓樸超穎介面於奇異點破壞光學對稱性 Disrupting Optical Symmetry at Exceptional Points with Plasmonic Topological Metasurfaces |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 非厄米系統 、電漿子超穎介面 、奇異點 、幾何相位 、光束偏轉 、非對稱異常反射 |
| 外文關鍵詞: | Plasmonic metasurface, Non-Hermitian system, Asymmetric anomalous reflection, Exceptional point, Pancharatnam-Berry phase |
| 相關次數: | 點閱:34 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於平面光學元件的快速發展,由次波長奈米結構陣列而成的超穎介面至今已存在多種光學應用,因其具備對電磁波物理特性的精準調控能力,備具發展潛力而受到重視,如一般的反射式超穎介面藉由結構設計可實現對圓偏振光的偏振轉換的功能,本文所設計之非厄米電漿子超穎介面,引入非厄米系統中,因奇異點(Exceptional Point, EP)存在所產生的單向傳輸特性,設計於特徵波長與特定尺寸下,可選擇性吸收左圓偏振光使轉換至正交偏振態之反射效率為零,實現單一偏振轉換特性的反射式超穎介面,透過分析反射矩陣之特徵值驗證奇異點的存在,並透過實驗驗證單向反射的特性,可於EP波長下達到43%的圓二色性。
本研究所設計之非厄米電漿子超穎介面,藉由幾何相位(Geometric phase)的排列方式,設計光束偏轉超穎介面,將其因EP存在所產生之單向反射特性引入波前調控,於圓偏振光入射下可實現非對稱異常反射效果。實際樣品於特徵波長與其他波長下可形成鮮明對比,在可見光波段下實現光束偏轉效果外,於特徵波長下僅會有被轉換為左圓偏振態的正一階光束出射。進一步以x偏振光正向入射,檢測是否對線偏振光也具備相同的非對稱偏折分光功能,因一般各向異性結構所構成之光束偏轉介面在x偏振光入射下,將其偏折為兩道對稱的正交圓偏振光束出射。而此非厄米光束偏轉超穎介面在特徵波長下可以實現非對稱光束偏轉效果,於x偏振光正向入射下僅有右圓偏振分量被轉換為左圓偏振光出射。
後續針對此對掌性金屬奈米結構,於材料折射率改變後,重新優化一組鏡像單元結構,在數值模擬與實驗結果中驗證其因結構鏡像對稱而相反的光學響應,並結合單層過渡金屬硫化物(TMDCs)作為螢光光源設計單元結構,透過非厄米電漿子超穎介面的圓二色性,在單層二硫化鎢(WS2)的螢光波長下,實現對螢光偏振度調控的功能。期望後續能結合大面積單層二維材料與非厄米光束偏轉超穎介面,藉由侷域性表面電漿共振與激子交互作用,進一步實現非同調光源的非對稱光束偏轉效果。
Non-Hermitian metasurfaces can exhibit distinctive and unconventional optical behaviors driven by the interaction of gain and loss, which give rise to phenomena such as anomalous reflection, nonreciprocal transmission, and sensitivity enhancement.
Here, we numerically designed and experimentally demonstrated a plasmonic non-Hermitian metasurface which consists of 2D planar chiral meta-structure arrays working at an exceptional point (EP). Through the optimization of the meta-atoms, our results indicate that at the positions of optical singularities, the reflection intensities of light with polarization states parallel to the incident light approach zero. This observation verifies that the utilization of plasmonic topological metasurface units in metasurface devices can effectively disrupt optical symmetry. By resolving the eigenstates and eigenvalues of the reflection matrix, we validate that the parameter space forms a self-intersecting Riemann sheet in which the EP is located at the point of intersection.
Moreover, by introducing Pancharatnam-Berry (PB) phase, the EP-enabled non-Hermitian phase gradient metasurface can control circularly-polarized reflected beams independently under linearly and circularly polarized light illumination at different wavelengths, each with distinct power ratios.
Furthermore, we designed a pair of mirrors symmetrical non-Hermitian metasurfaces to realize the opposite optical response. By incorporating with monolayer TMDCs, the emitted photons could strongly couple with the non-Hermitian metasurface, leading to the asymmetric polarization state in emitted photons in the far field.
[1] Y. Liu, and X. Zhang, "Metamaterials: a new frontier of science and technology," Chemical Society Reviews 40, 2494-2507 (2011).
[2] G. V. Viktor, "The electrodynamics of substances with simultaneously negative values of and μ," Soviet Physics Uspekhi 10, 509 (1968).
[3] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966-3969 (2000).
[4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184-4187 (2000).
[5] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[6] B. K. Ledimo, P. Moaro, R. Ramogomana, M. Mosalaosi, and B. Basutli, "Design procedure of a frequency reconfigurable metasurface antenna at mmwave band," Telecom 3, 379-395 (2022).
[7] F. Ding, Y. Chen, and S. I. Bozhevolnyi, "Metasurface-based polarimeters," Applied Sciences 8, 594 (2018).
[8] D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Yue Bun Pun, S. Zhang, and X. Chen, "Helicity multiplexed broadband metasurface holograms," Nature Communications 6, 8241 (2015).
[9] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature Nanotechnology 10, 308-312 (2015).
[10] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "A broadband achromatic metalens in the visible," Nature Nanotechnology 13, 227-232 (2018).
[11] S. Zhang, C. L. Wong, S. Zeng, R. Bi, K. Tai, K. Dholakia, and M. Olivo, "Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective," Nanophotonics 10, 259-293 (2021).
[12] M. Li, C. U. Hail, S. Biswas, and H. A. Atwater, "Excitonic beam steering in an active van der waals metasurface," Nano Letters 23, 2771-2777 (2023).
[13] C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser & Photonics Reviews 10, 986-994 (2016).
[14] P. Törmä, and W. L. Barnes, "Strong coupling between surface plasmon polaritons and emitters: a review," Reports on Progress in Physics 78, 013901 (2015).
[15] W. Hou, and S. B. Cronin, "A review of surface plasmon resonance-enhanced photocatalysis," Advanced Functional Materials 23, 1612-1619 (2013).
[16] G. Das, M. Coluccio, S. Alrasheed, A. Giugni, M. Allione, B. Torre, G. Perozziello, P. Candeloro, and E. Di Fabrizio, "Plasmonic nanostructures for the ultrasensitive detection of biomolecules," 39, 547-586 (2016).
[17] L. Lin, X. Bi, Y. Gu, F. Wang, and J. Ye, "Surface-enhanced Raman scattering nanotags for bioimaging," Journal of Applied Physics 129, 191101 (2021).
[18] L. Pasteur, "Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire" (Memoir on the relationship which can exist between crystalline form and chemical composition, and on the cause of rotary polarization)," Comptes rendus hebdomadaires des séances de l'Académie des sciences 26, 535-538 (1848).
[19] T. M. van der Spek, "Selling a theory: The role of molecular models in J. H. van 't Hoff's stereochemistry theory," Annals of Science 63, 157-177 (2006).
[20] W. T. B. Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (C.J. Clay and Sons, 1904).
[21] K.-H. Ernst, "Molecular chirality at surfaces," physica status solidi (b) 249, 2057-2088 (2012).
[22] S. Singhal, S. Bagga, P. Goyal, and V. Saxena, "Augmented chemistry: Interactive education system," International Journal of Computer Applications 49 (2012).
[23] A. Lininger, G. Palermo, A. Guglielmelli, G. Nicoletta, M. Goel, M. Hinczewski, and G. Strangi, "Chirality in light–matter interaction," Advanced Materials 35, 2107325 (2023).
[24] A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, "Giant intrinsic chiro-optical activity in planar dielectric nanostructures," Light: Science & Applications 7, 17158-17158 (2018).
[25] T. Naeem, A. S. Rana, M. Zubair, T. Tauqeer, and M. Q. Mehmood, "Breaking planar symmetries by a single layered metasurface for realizing unique on-chip chiroptical effects," Opt. Mater. Express 10, 3342-3352 (2020).
[26] M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, "Multispectral chiral imaging with a metalens," Nano Letters 16, 4595-4600 (2016).
[27] Y. Jahani, E. R. Arvelo, F. Yesilkoy, K. Koshelev, C. Cianciaruso, M. De Palma, Y. Kivshar, and H. Altug, "Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles," Nature Communications 12, 3246 (2021).
[28] Z. Wang, Y. Wang, G. Adamo, J. Teng, and H. Sun, "Induced optical chirality and circularly polarized emission from Achiral CdSe/ZnS quantum dots via resonantly coupling with plasmonic chiral metasurfaces," Laser & Photonics Reviews 13, 1800276 (2019).
[29] M. Deng, Z. Li, X. Rong, Y. Luo, B. Li, L. Zheng, X. Wang, F. Lin, A. J. Meixner, K. Braun, X. Zhu, and Z. Fang, "Light-controlled near-field energy transfer in plasmonic metasurface coupled MoS2 monolayer," Small 16, 2003539 (2020).
[30] E. Britannica, "Huygens’ principle," https://www.britannica.com/science/Huygens-principle.
[31] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333-337 (2011).
[32] N. Yu, and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139-150 (2014).
[33] A. Pors, and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Express 21, 27438-27451 (2013).
[34] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
[35] Y. Qiu, S. Tang, T. Cai, H. Xu, and F. Ding, "Fundamentals and applications of spin-decoupled Pancharatnam-Berry metasurfaces," Frontiers of optoelectronics 14, 134-147 (2021).
[36] M. Kang, T. Feng, H.-T. Wang, and J. Li, "Wave front engineering from an array of thin aperture antennas," Opt. Express 20, 15882-15890 (2012).
[37] P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Letters 17, 445-452 (2017).
[38] S. Pancharatnam, "Generalized theory of interference, and its applications," Proceedings of the Indian Academy of Sciences - Section A 44, 247-262 (1956).
[39] M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45-57 (1984).
[40] "THORLABS," https://www.thorlabs.com/.
[41] W. Xu, X. Ling, D. Xu, S. Chen, S. Wen, and H. Luo, "Enhanced optical spatial differential operations via strong spin-orbit interactions in an anisotropic epsilon-near-zero slab," Physical Review A 104, 053513 (2021).
[42] H.-T. Chen, A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Reports on Progress in Physics 79, 076401 (2016).
[43] H.-H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods 1, 1600064 (2017).
[44] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters 118, 113901 (2017).
[45] C. Menzel, C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Physical Review A 82, 053811 (2010).
[46] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, "Parity–time symmetry and exceptional points in photonics," Nature Materials 18, 783-798 (2019).
[47] W. D. Heiss, "The physics of exceptional points," Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
[48] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, and X. Zhang, "Accessing the exceptional points of parity-time symmetric acoustics," Nature Communications 7, 11110 (2016).
[49] C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, "Observation of PT phase transition in a simple mechanical system," American Journal of Physics 81, 173-179 (2013).
[50] S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, "PT symmetry and spontaneous symmetry breaking in a microwave billiard," Physical Review Letters 108, 024101 (2012).
[51] M. Yang, L. Zhu, Q. Zhong, R. El-Ganainy, and P.-Y. Chen, "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications 14, 1145 (2023).
[52] R. El-Ganainy, M. Khajavikhan, D. N. Christodoulides, and S. K. Ozdemir, "The dawn of non-Hermitian optics," Communications Physics 2, 37 (2019).
[53] K. N. Kenta Takata, Eiichi Kuramochi, Shinji Matsuo, Koji Takeda, Takuro Fujii, Shota Kita, Akihiko Shinya, and Masaya Notomi, "Observation of exceptional point degeneracy with current-injected photonic crystal lasers," NTT Technical Review 20, 35-41 (2022).
[54] A. Ruschhaupt, F. Delgado, and J. G. Muga, "Physical realization of -symmetric potential scattering in a planar slab waveguide," Journal of Physics A: Mathematical and General 38, L171 (2005).
[55] S. K. Gupta, Y. Zou, X.-Y. Zhu, M.-H. Lu, L.-J. Zhang, X.-P. Liu, and Y.-F. Chen, "Parity-time symmetry in non-Hermitian complex optical media," Advanced Materials 32, 1903639 (2020).
[56] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, "Theory of coupled optical PT-symmetric structures," Opt. Lett. 32, 2632-2634 (2007).
[57] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, "Observation of parity–time symmetry in optics," Nature Physics 6, 192-195 (2010).
[58] M. Kang, J. Chen, and Y. D. Chong, "Chiral exceptional points in metasurfaces," Physical Review A 94, 033834 (2016).
[59] S. H. Park, S.-G. Lee, S. Baek, T. Ha, S. Lee, B. Min, S. Zhang, M. Lawrence, and T.-T. Kim, "Observation of an exceptional point in a non-Hermitian metasurface," Nanophotonics 9, 1031-1039 (2020).
[60] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004).
[61] R. Dong, and I. Kuljanishvili, "Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems," Journal of Vacuum Science & Technology B 35 (2017).
[62] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, "Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets," Accounts of Chemical Research 48, 56-64 (2015).
[63] C. Sayers, "Charge density wave phenomena in trigonal transition metal dichalcogenides," (University of Bath, 2020).
[64] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides," Nature Reviews Materials 2, 17033 (2017).
[65] A. Krasnok, and A. Alù, "Valley-selective response of nanostructures coupled to 2D transition-metal dichalcogenides," Applied Sciences 8, 1157 (2018).
[66] S. Zhao, X. Li, B. Dong, H. Wang, H. Wang, Y. Zhang, Z. Han, and H. Zhang, "Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges," Reports on Progress in Physics 84, 026401 (2021).
[67] Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, "Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications," Light: Science & Applications 9, 190 (2020).
[68] M. Gao, L. Yu, Q. Lv, F. Kang, Z.-H. Huang, and R. Lv, "Photoluminescence manipulation in two-dimensional transition metal dichalcogenides," Journal of Materiomics 9, 768-786 (2023).
[69] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, "Colloquium: Excitons in atomically thin transition metal dichalcogenides," Reviews of Modern Physics 90, 021001 (2018).
[70] H. Şar, A. Özden, B. Yorulmaz, C. Sevik, N. Kosku Perkgoz, and F. Ay, "A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers," Journal of Materials Science: Materials in Electronics 29, 8785-8792 (2018).
[71] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, "Recent development of two-dimensional transition metal dichalcogenides and their applications," Materials Today 20, 116-130 (2017).
[72] C. Kim, M.-A. Yoon, B. Jang, J.-H. Kim, and K.-S. Kim, "A review on transfer process of two-dimensional materials," Tribology and Lubricants 36, 1–10 (2020).
[73] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, "Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping," 2D Materials 1, 011002 (2014).
[74] G. Hu, X. Hong, K. Wang, J. Wu, H.-X. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C.-W. Qiu, "Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface," Nature Photonics 13, 467-472 (2019).
[75] Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, "Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field," Advanced Materials 30, 1801908 (2018).
[76] "NKT Photonics," https://www.nktphotonics.com/.
[77] "Mitutoyo," https://mitutoyo.eu/.
[78] "Teledyne FLIR," https://www.flir.com/.
校內:2029-07-25公開