| 研究生: |
王暐婷 Wang, Wei-Ting |
|---|---|
| 論文名稱: |
應用電性鑑別偵測法於競爭型免疫電極檢測晶片之研究 Study of Competitive Immunoassay Detection Chip Based on Impedance Measurement |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 電性鑑別 、甲基安非他命 、競爭免疫反應 、金奈米粒子 、表面化學修飾 |
| 外文關鍵詞: | electro-microchip, methamphetamine, competitive immuno-reaction, gold nanoparticles, surface chemical modification |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將電性鑑別法應用於甲基安非他命競爭免疫反應之檢測,利用晶片表面修飾技術將抗原或蛋白質固定於晶片表面,並結合微阻抗晶片與結合金奈米粒子抗體標定技術,以助於定性偵測待測檢體之免疫反應並定量阻抗量測分析結果鑑別。實驗中利用電感、電容、電阻量測儀(LCR meter)偵測阻抗晶片之電性訊號,藉由電極晶片阻抗變化來判斷競爭免疫反應發生之情況,並建立競爭免疫分析偵測系統。本實驗成功利用表面化學修飾方法增強蛋白質與晶片之接合能力,並將免疫檢測之檢體使用量降低至30 μL及競爭免疫反應偵測時間減少至13分鐘。另外可在低頻率時(100 Hz)檢測到較高鑑別度之阻抗電性訊號,再搭配濃度稀釋100倍的MET-GC作免疫偵測可降低其靈敏度至1 ng/mL。本研究利用表面修飾方法、阻抗分析晶片與奈米粒子免疫鑑別技術,達到快速偵測、低檢體使用量、低成本的目的,提供了毒品檢測與免疫分析一個全新的方向與思維。
This study, a novel micro-electrode biochip for immunoassay was applied to detect competitive immuno-reaction of methamphetamine, a gold nanoparticles (AuNPs) as a label of antibody to enhance immunoassay impedance quantitative analysis detection. Compared with traditional enzyme-linked immunosorbent assay (ELISA), we adopted self-assembled monolayer to immobilize of antigen or antibody on the chip surface, and detected the immuno-reaction signal of AuNPs to quantitative and qualitative analysis. The LCR meter instrument was used to detect the electric single on immune-impedance chip. It detected the impedance changes because of competitive immuno-reaction that was established a competitive immunoassay detection system. In this study, we used surface chemical modification method to modify the surface of immune-impedance chip. Then using the contact angle measurement instrument and the fluorescent labeled antibody method verify the results of chip modification. Only used 30 μL of the samples that the immune detection can be work in the immune detection system. The total detection time of the immunoassay was about 13 minutes. It has the best distinction under 100 Hz in this detection system, according to the relationship between the impedance and methamphetamine concentration. It was diluted 100 times of the MET-GC for the immune detection, the minimum signal detection of electrode chip was 1 ng/mL of methamphetamine. In this study, combined impedance changing detection and immunogold labeling technique in competitive immunoassay was a novel notion. Impedance measurement was performed for quantitative and qualitative analysis in the aim of decreasing detection time and lowering assay cost. It provided a new immunoassay method for drug-detection and medical analysis science.
[1] 行政院衛生署管制藥品管理局統計資料,2010。
[2] T. Porstmann and S.T. Kiessig, “Enzyme immunoassay techniques and overview,” Journal of Immunological Methods, 150, pp. 5-21, 1992.
[3] J. Hardman, L. Limbird, and A. Gilman, Goodman and Gilman's the pharmacological basis of therapeutics, McGraw-Hill, 2001.
[4] Karch and B. Steven, The pathology of drug abuse, CRC Press, 1993.
[5] K. P. Shaw, Human methamphetamine-related fatalities in Taiwan during 1991-1996, J. Forensic Sci.,1999.
[6] B. S. Bunney, J. R. Walters, R. H. Roth and A. K. Aghajanian, “Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity,” Journal of Pharmacology and Experimental Therapeutics,185, pp. 560-571,1973.
[7] S. B. McPherson, H. V. Hall, E. Yudko, Methamphetamine Use: Clinical and Forensic Aspects, CRC Press, 2003.
[8] Y. H. Caplan, “Abbott phencyclidine and barbiturates abused drug assays: valuation and comparison of ADx FPIA, TDx FPIA, EMIT, and GC/MS ethods,” Journal of Forensic Sciences, 34, pp. 289-292. 1989.
[9] J. E. Wallace, H. E. Hamilton, H. S. Schwertner, D. E. King, L. Macny, and K. Blum, “Thin-layer chromatographic analysis of cocaine and benzoylecgonine in urine,” Journal of Chromatography A, 114, pp. 433-441. 1975.
[10] L. Geiser, S. Cherkaoui, J. L. Veuthey, “Simultaneous analysis of some amphetamine derivatives in urine by nonaqueous capillary capillary electrophoresis coupled to electrospary ionization mass spectrometry,” Journal of Chromatography A, 895, pp. 111-121, 2000.
[11] Chaubey and B. D. Malhotra, “Mediated biosensors,” Biosensors and Bioelectronics, 17, pp. 441-456, 2002.
[12] 何敏夫,臨床生化學, 合記圖書出版社, 1992。
[13] Garrett, R. H. and Grisham, C. M. Biochemistry, Saunders College Publishing, 1995.
[14] 廖國棠,金奈米粒子標記物在免疫分析、DNA 序列分析及微管道晶片系統分析上的應用,國立中山大學化學研究所博士論文,民國九十四年。
[15] E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,” Journal of Immunology, 109, pp. 129-135, 1972.
[16] T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart –type fatty acid-binding protein,” Clinical Biochemistry, 34, pp. 257-263, 2001.
[17] M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
[18] F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
[19] P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
[20] J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278, 1997.
[21] C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology, 5th edition, Garland Science, 2001.
[22] I. Bronstein, J. C. Voyta, G. H. G. Thorpe, L. J. Kricka and G. Armstrong, “Chemiluminescent assay of alkaline phosphatase applied in an ultrasensitive enzyme immunoassay of thyrotropin,” Clinical Chemistry, 35, pp. 1441-1446, 1989.
[23] E. Ishikawa, S. Hashida, T. Kohno and K. Hirota, “Ultrasensitive enzyme immunoassay,” Clinica Chimica Acta, 194, pp. 43-55, 1990.
[24] S. A. Berson and R. S. Yalow, “Immunoassay of endogenous plasma insulin in Man,” Annals of the New York Academy of Sciences, 82, pp. 1157-1175, 1959.
[25] G. Sakai, K. Ogata, T. Uda, N. Miura and N. Yamazoe, “A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine,” Sensors And Actuators B-Chemical, 49, pp. 5-12, 1998.
[26] B. K. Oh, Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee and J. W. Choi, “Immunosensor for detection of legionella pneumophila using surface plasmon resonance,” Biosensors and Bioelectronics, 18, pp. 605-611, 2003.
[27] W. D. Wilson, “Analyzing Biomolecular Interactions,” Science, 295, pp. 2103-2105, 2002.
[28] B. K. Oh, W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee and J. W. Choi, “The fabrication of protein chip based on surface plasmon resonance for detection of pathogens,” Biosensors and Bioelectronics, 20, pp. 1847-1850, 2004.
[29] S. Hearty, P. J. Conroy, B. Vijayalakshmi, Ayyar, B. Byrne, and R. O’Kennedy, “Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends,” Expert Review of Vaccines, 9, pp. 645-664, 2010.
[30] G. U. Lee, D. A. Kidwell and R. J. Colton, “Sensing discrete streptavidin-biotin interactions with atomic force microscopy,” Langmuir, 10, pp. 354-357, 1994.
[31] L. Li, S. Chen, S. Oh and S. Jiang, “In situ single-molecule detection of antibody-antigen binding by tapping-mode atomic force microscopy,” Analytical Chemistry, 74, pp. 6017-6022, 2002.
[32] F. Cecchet, A. S. Duwez, S. Gabriel, C. Jérôme, R. Jérôme, K. Glinel, S. D. Champagne, A. M. Jonas, and B. Nysten, “Atomic Force Microscopy Investigation of the Morphology and the Biological Activity of Protein-Modified Surfaces for Bio- and Immunosensors,” Analytical Chemistry, 79, pp. 6488-6495, 2007 .
[33] G. Kada, F. Kienberger, and P. Hinterdorfer, “Atomic force microscopy in bionanotechnology,” Nano Today, 13, pp. 12-19, 2008.
[34] S. H. Lee, D. D. Stubbs, J. Cairney and W. D. Hunt, “Rapid detection of bacterial spores using a quartz crystal microbalance (QCM) immunoassay,” IEEE Sensors Journal, 5, 737-743, 2005.
[35] S. Kurosawa, H. Aizawa, M. Tozuka, M. Nakamura and J.-W. Park, “Immunosensors using a quartz crystal microbalance,” Measurement Science and Technology, 14, pp. 1882-1887, 2003.
[36] S. Schluecker, B. Kuestner, A. Punge, R. Bonfig, A. Marx and P. Stroebel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” Journal of Raman Spectroscopy, 37, pp. 719-721, 2006.
[37] D. A. Stuart, A. J. Haes, C. R. Yonzon, E. M. Hicks and R. P. Van Duyne, “Biological applications of localised surface plasmonic phenomenae,” IEE Proceedings - Nanobiotechnology, 152, pp. 13-32, 2005.
[38] D. S. Grubisha, R. J. Lipert, H.-Y. Park, J. Driskell, and M. D. Porter, “Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels,” Analytical Chemistry, 75, pp. 5936-5943, 2003.
[39] J. P. Gosling, “A decade of development in immunoassay methodology,” Clinical Chemistry, 36, pp. 1408-1427, 1990.
[40] J. S. Rossier and H. H. Girault, “Enzyme linked immunosorbent assay on a microchip with electrochemical detection,” Lab on a chip, 1, pp. 153-157, 2001.
[41] W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, 281, 2016-2018, 1998.
[42] M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, 281, pp. 2013-2016, 1998.
[43] J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell and J. Emnéus, “Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection,” Analytical Chemistry, 74, pp. 2994-3004, 2002.
[44] C. A. Marquette and L. J. Blum, “Electro-chemiluminescent biosensing,” Analytical and Bioanalytical Chemistry, 390, pp. 155-168, 2003.
[45] C. S. Holgate, P. Jackson, P. N. Cowen and C. C. Bird, “Immunogold-silver staining: New method of immunostaining with enhanced sensitivity,” The Histochemical Society, 31, pp. 938-944, 1983.
[46] S. Kubitschko, J. Spinke, T. Bru¨ ckner, S. Pohl, and N. Oranth, “Sensitivity Enhancement of Optical Immunosensors with Nanoparticles,” Analytical Biochemistry, 253, pp. 112-122, 1997.
[47] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, 277, pp. 1078-1081, 1997.
[48] S. Brakmann, “DNA-based barcodes, nanoparticles, and nanostructures for the ultrasensitive detection and quantification of proteins,” Angewandte Chemie-International Edition, 43, pp. 5730-5734, 2004.
[49] J. M. Nam, C. S. Thaxton and C. A. Mirkin, “Nanoparticle-based bio–bar codes for the ultrasensitive detection of proteins,” Science, 301, pp. 1884-1886, 2003.
[50] X. Chu, X. Fu, K. Chen, G. L. Shen and R. Q. Yu, “An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label,” Biosensors and Bioelectronics, 20, pp. 1805-1812, 2005.
[51] Y. P. Bao, T. F. Wei, P. A. Lefebvre, H. An, L. He, G. T. Kunkel and U. R. Muller, “Detection of protein analytes via nanoparticle-based bio bar code technology,” Analytical Chemistry, 78, pp. 2055-2059, 2006.
[52] C. Grüttner, K. Müller, J. Teller, F. Westphal, A. Foreman and R. Ivkov, “Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy,” Journal of Magnetism and Magnetic Materials, 311, pp. 181-186, 2007.
[53] N. T. K. Thanh and Z. Rosenzweig, “Development of an aggregation-based immunoassay for anti-Protein A using gold nanoparticles,” Analytical Chemistry, 74, pp. 1624-1628, 2002.
[54] S. Cobbe, S. Connolly, D. Ryan, L. Nagle, R. Eritja and D. Fitzmaurice, “DNA-controlled assembly of protein-modified gold nanocrystals,” Journal of Physical Chemistry B, 107, pp. 470-477, 2003.
[55] N. L. Binnun, A. B. Lindner, O. Zik, Z. Eshhar and E. Moses, “Quantitative detection of protein arrays,” Analytical Chemistry, 75, pp. 1436-1441, 2003.
[56] Z. F. Ma and S. F. Sui, “Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro,” Angewandte Chemie-International Edition, 41, pp. 2176-2179, 2002.
[57] L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas and J. L. West, “A whole blood immunoassay using gold nanoshells,” Analytical Chemistry, 75, pp. 2377-2381, 2003.
[58] M. Lin, Y. C. Lin, K.C. Su, Y. T. Wang, T. C. Chang and H. P. Lin, “A novel real-time immunoassay utilizing an electro-immunosensing microchip and gold nanoparticles for signal enhancement,” Sensors and Actuators B-Chemical, 117, pp. 451-456, 2006.
[59] A. Abera and J.-W. Choi, “Quantitative lateral flow immunosensor using carbon nanotubes as label,” Analytical Methods, 2, pp.1819-1822, 2010.
[60] D. Samanta and A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications,” Chemical Society Reviews, 40, pp. 2567-2592, 2011.
[61] 奈米通訊,十四卷,pp. 27-31, 2007.
[62] X. Sun , B. Liu, P. Hu and W. Hu, “Highly sensitive interfacial fluorescence sensing of deoxyribonucleic acid based on self-assembled multilayers,” Thin Solid Films, 518, pp. 4437-4441, 2010.
[63] M. A. Hayat (Ed.), Colloidal Gold: Principles, Methods, and Applications, Academic Press, New York, 1989.
[64] O. Niwa, M. Morita, and H. Tabei, “Electrochemical Behavior of Reversible Redox Species at Interdigitated Array Electrodes with Different Geometries: Consideration of Redox Cycling and Collection Efficiency,” Analytical Chemistry, 62, pp. 447-452, 1990.
[65] O. Niwa, M. Morita, and H. Tabei, “Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes,” Electroanalysis, 3, pp. 163-168, 1991.
[66] H.illebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, “High Electric Resistance Polymer/Lipid Composite Films on Indium-Tin-Oxide Electrodes,” Langmuir, 15, pp. 8451-8459 , 1999.
[67] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood and D. J. Beebe, “Three dimensional nicro-channel gabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Micro- Electromechanical Systems, 9, pp. 76-81, 2000.
[68] http://sms.kaist.ac.kr/~ischoi/bk/lecture/class%2009.pdf
[69] http://www.mne.umd.edu/LAMP/lamp_msds.htm, Laboratory for advanced materials processing, 2002.
[70] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063-1075, 1994.
[71] L. Yang and Y. Li, “AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7,” Biosensors and Bioelectronics, 20, pp. 1407-1416, 2005.