| 研究生: |
姜彣璋 Chiang, Wen-Chang |
|---|---|
| 論文名稱: |
油輪繫泊於浮筒之運動行為及繫纜失效影響研究 Study on Dynamic Motion of Oil Tanker with Single Buoy Mooring and the Effect of Mooring System Failure |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 油輪 、浮筒繫泊 、繫纜系統失效 |
| 外文關鍵詞: | Oil tanker, Buoy mooring system, Mooring system failure |
| 相關次數: | 點閱:105 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著油輪大型化的趨勢,在台灣港口受水深的限制,將無法停靠大型油輪,因此需要在外海借助浮筒繫泊系統穩定油輪運動,同時進行卸油作業。本研究運用ANSYS AQWA及Orcina OrcaFlex等套裝數值模式進行模擬,研究場址選在高雄港外海,同時考慮油輪在裝卸過程中規劃三組吃水深度,以及不同風、流向下的影響,針對油輪在單浮筒作業條件下,受波浪作用力、風及流推力的運動行為與繫纜張力進行探討。
為了解油輪繫泊於浮筒的運動反應,因此在規則波中,透過不同波高與風速下的模擬,探討大纜張力的特性,以及透過不同波向與風向下的模擬,探討油輪水平運動(縱移、橫移、平擺)特性與大纜張力值。此外,油輪在外海進行繫泊時因沒有港口遮蔽下,所吹襲的強風及海上洶湧之浪況,將造成油輪劇烈的運動反應,對繫纜系統造成斷纜的風險,除了盡量避免繫纜破壞的發生機率,亦需要事先研究評估若災害發生時可能造成何種程度的危害。因此本研究規劃三種繫纜系統失效情境進行分析,針對浮筒與油輪水平運動(縱移、橫移、平擺)變化、油輪漂移範圍,以及錨鏈與大纜的張力變化,配合中國港口技術規範的泊位錨地範圍,及美國石油學會(API RP 2SK)對於繫纜系統的張力規範進行探討,以提供台灣港口單位制定緊急應變措施之參考。
This research focuses on the motion of oil tanker with single buoy mooring system and the tension of mooring lines under operation conditions with wave, wind, and current forces. Simulation was accomplished with ANSYS AQWA and Orcina OrcaFlex. The target site was selected offshore outside Kaohsiung Port in this thesis. Consider the oil tanker in the unloading process planning three groups of drafts. The characteristics of hawser tension was discussed under regular waves with different wave heights and wind speeds. Through the simulation of different wave and wind directions, the characteristics of the tanker motions, only the motion on the horizontal plane of the tanker (Surge, sway, and yaw) and the value of hawser tension are analyzed. In addition, three types of mooring system failure were simulated. The motion on the horizontal plane of the tanker and buoy, drift range of tanker, hawser and anchor chain tension after the mooring system failure were discussed.
American Petroleum Institute. API RP 2SK : Design and Analysis of Stationkeeping Systems for Floating Structures. (2005).
ANSYS. Aqwa Theory Manual. (2015).
Deza, M. M., &Deza, E. Encyclopedia of distances. In Encyclopedia of distances (pp. 1-583): Springer. (2009).
DNV. Modeling and Analysis of Marine Operations. (2011).
Faltinsen, O. Sea loads on ships and offshore structures (Vol. 1): Cambridge university press. (1993).
Huang, C.-C., Tang, H.-J., &Liu, J.-Y. Modeling volume deformation in gravity-type cages with distributed bottom weights or a rigid tube-sinker. Aquacultural Engineering, 37(2), 144-157. (2007).
Huang, C.-C., Tang, H.-J., &Liu, J.-Y. Effects of waves and currents on gravity-type cages in the open sea. Aquacultural Engineering, 38(2), 105-116. (2008).
Isherwood, R. Wind resistance of merchant ships. The Royal Institution of Naval Architects, 115, 327-338. (1972).
Korte, H., Stuppe, S., Wesuls, J.-H., &Takagi, T. The Inertia Value Transformation in Maritime Applications: Intech Open. (2017).
Lee, S.-W., &Kim, Y.-D. A Study on Improvement of Criteria for Mooring Safety Assessment in Single Point Mooring. 해양환경안전학회지, 25(3), 287-297. (2019).
Orcina. Documentation for OrcaFlex (version 11.1b). (2021).
Rutkowski, G. A comparison between conventional buoy mooring CBM, single point mooring SPM and single anchor loading SAL systems considering the Hydro-meteorological condition limits for safe ship’s operation offshore. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13(1). (2019).
Salvesen, N. Second-order steady-state forces and moments on surface ships in oblique regular waves. Paper presented at the Int Symp. On the Dynamics of Marine Vehicles and Structures in Waves. (1974).
Schellin, T. E. Dynamics of single point mooring configurations [A]. Paper presented at the International maritime conference. (2007).
Unified Facilities Criteria. Design: Moorings. (2005).
Villa-Caro, R., Carral, J. C., Fraguela, J. Á., López, M., &Carral, L. A review of ship mooring systems. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 69(1), 123-149. (2018).
林維明. 外海卸油浮筒工程概說. (1977).
嚴愷. 海岸工程. 北京: 海洋出版社. (2002).
陳韻茹. 船體繫泊系統之動態模擬. 國立成功大學. (2006).
王科. 新波浪理論在繫留船舶二階波浪力計算中的應用研究. 船舶力學, 12(1), 1-11. (2008).
李玉龍. 颱風作用下船舶單點繫泊的試驗研究. 中國海洋大學. (2008).
邱永芳, 張富東, 周宗仁, &翁文凱. 船舶運動數值模式建立之研究(四). (2009).
紀晨曦. 曹妃甸港區CALM系統建設的可行性研究. 大連海事大學. (2011).
蕭冠宇, 陳信宏, 黃文財, 江文彬, &黃國書. 高雄港洲際貨櫃中心第二期工程計畫委託技術服務工作水工模型試驗. (2011).
黃建福. 單點浮筒在波浪中的響應及浮筒形式選擇和主尺度優化. 華南理工大學. (2012).
劉曉健. FPSO單點繫泊系統運動響應分析. 鎮江:江蘇科技大學. (2013).
湯健勇, &王飛. 水流中船舶單雙錨泊偏盪運動響應研究. 哈爾濱工程大學學報(2015), 12-18. (2015).
王逸. 小水線面雙體船水動力特性分析. 江蘇科技大學. (2017).
許文陽, 莊紫晴, 楊瑞源, 許瑋婷, &游雅晴. 水下繫纜動態實驗研究. 海洋工程研討會, 台北. (2017).
郭一羽, 湯麟武, 陳陽益, 張憲國, &蔡清標. 海岸工程. (2017).
方信雄. 港埠概論. (2019).
蔡立宏, 洪維屏, 吳南靖, 魏志強, 蔡如正, &吳冠德. 風力作用下船舶受力及繫纜力之預警評估. (2019).
蘇青和, 洪維屏, 楊瑞源, 陳信宏, &許文陽. 船舶斷纜預警系統建置及繫纜方式研擬. (2019).