| 研究生: |
李宏君 Li, Hong-Chun |
|---|---|
| 論文名稱: |
從空載光達點雲之反射強度萃取道路交通標線交點 Extraction of Intersection Points of Road Marking Lines from Airborne LiDAR Reflectance Data |
| 指導教授: |
蔡展榮
Tsay, Jaan-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 反射強度 、空照數位影像 、空載光達 、擴充式最小二乘匹配 |
| 外文關鍵詞: | Extended Least Squares Matching (ELSM), reflectance, Aerial Digital Image, Airborne LiDAR |
| 相關次數: | 點閱:81 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
空載光達與航空攝影測量的整合應用愈來愈受到重視,其最重要的前置工作為統一光達點雲與空照影像的坐標系統,本文的主要目的即是以光達點雲的點特徵求解空照影像的外方位參數,如此光達點雲與空照影像便可建立在共同的坐標系統之中。從真實的空載光達點雲中,觀察到瀝青路面和交通標線之反射強度明顯不同,根據此一通性,本文設計一個擴充式最小二乘匹配法,以求定交通標線之線特徵參數,進一步求得直交的兩特徵線之交點,此法產生的交點群即可用作光達與影像整合之用。另外,由於本文使用的光達航帶寬度明顯小於空照影像航帶所涵蓋的地面寬度,在統一光達點雲與空照影像坐標基準之前,勢必要先連結多條光達航帶的點雲,本文利用共同掃瞄區裡的同名交點進行相鄰光達航帶點雲坐標基準偏差量之估計與改正。
光達航帶點雲坐標基準經改正後,同名交點之整體平面偏差量之均方根值從0.650m降至0.286m,符合光達點之平面先驗精度±0.25m。使用這些基準改正後的點位做為地控點(共30點),施行空照影像光束法平差,整體空三精度達到±0.67個像元的次像元精度等級,驗證本文所提之方法應可行。
Recently, the issue of integrating airborne LiDAR and aerial photogrammetry has been in academic and industrial spotlight, because both technologies have their unique characteristics respectively and some advantages of airborne LiDAR can compensate for shortcomings of aerial photogrammetry, and vice versa. An absolute prerequisite for combining both data sets is to establish a common reference frame. The main objective of this study is to utilize the point features in LiDAR point cloud and aerial image to determine external orientation of aerial images defined in the LiDAR coordinate system. Hence, an algorithm based on Extended Least Squares Matching is designed to extract road marking lines from airborne LiDAR point cloud, according to the high contrast character of LiDAR reflectance between asphalt and road marking lines. After that, the intersection of two road marking lines can be solved as the point feature in LiDAR point cloud. Besides, the point features, as tie-point, also can be applied to adjust the systematic error between LiDAR strips before combining LiDAR point cloud and aerial images.
The Root Mean Square Error (RMSE) of the tie points between LiDAR strips is decreased from 0.650m to 0.286m after 3D conformal transformation. After that, the point features will be used as ground control points to determine the external orientation of aerial images by bundle block adjustment. In the study, there are 30 control points extracted from LiDAR point cloud and the standard deviation of unit weight in the bundle block adjustment reaches ±0.67 pixels.
王聖鐸,2005。以浮測模型理論萃取三維空間資訊-以建物重建為例。國立成功大學測量及空間資訊學系,博士論文。
趙鍵哲、彭念豪,2005。以光達資料之控制直線求解單張像片外方位參數之模式探討與可行性評估。航測及遙測學刊,10(1):89-102。
蔡欣怡,2004。 結合雷射測高與強度資料進行區域平差可行性之研究。國立成功大學測量及空間資訊學系,碩士論文。
劉金燁 ,2007。連結長方體法之設計與初步成果之品質評估。國立成功大學測量及空間資訊學系,碩士論文。
劉榮寬、徐偉城、史天元、劉進金,2005。 空載光達系統率定初探。測量工程期刊47(2):49-66。
嚴晟瑋、蔡展榮,2003。空三地控點之像點自動化匹配量測作業之構想和初步成果。第22屆測量學術及應用研討會,國防大學中正理工學院:215-222。
Baltsavias, E. P., 1999a, “A Comparison Between Photogrammetry and Laser Scanning”, ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3): 83-94.
Burman, H., 2000, “Adjustment of Laser Scanner Data for Correction of Orientation Errors”, International Archives of Photogrammetry and Remote Sensing 33(B3): 125-132.
Crombaghs, M. J. E., R. Brugelmann, E. J. de Min, 2000, “On The Adjustment of Overlapping Strips of Laser Altimeter Height Data”, International Archives of Photogrammetry and Remote Sensing 33(B3): 230-237.
Ebner, H. and T. Ohlhof, 1994, “Utilization of Ground Control Points for Image Orientation without Point Identification in Image Space”, International Archives of Photogrammetry and Remote Sensing, ISPRS Commission III Symposium, Munich, Sep, 30(Part 3/1):206-211.
Habib, A., M. Ghanma, M. Morgan, R. Al-Ruzouq, 2005, “Photogrammetric and LiDAR Data Registration Using Linear Features”, Photogrammetric Engineering and Remote Sensing 71(6): 699-707.
Höfle, B. and N. Pfeifer, 2007, “Correction of Laser Scanning Intensity Data: Data and Model-Driven Approaches”, ISPRS Journal of Photogrammetry and Remote Sensing 62(6): 415-433.
Jelalian, A. V., 1992, “Laser Radar Systems”, Artech House, Boston London.
Kaasalainen, S., J. Hyyppä, P. Litkey, H. Hyyppä, E. Ahokas, A. Kukko, H. Kaartinen, 2007, “Radiometric Calibration of ALS Intensity”, International Archives of Photogrammetry and Remote Sensing 36, Part3/W52: 201-205.
Kilian, J., N. Haala, M. Englich, 1996, “Capture and Evaluation of Airborne Laser Scanner Data”, International Archives of Photogrammetry and Remote Sensing 31(B3): 383-388.
Mitishita, E., A. Habib, J. Centeno, A. Machado, J. Lay, C. Wong, 2008, “Photogrammetric and LiDAR Data Integration Using The Centroid of A Rectangular Roof as A Control Point”, The Photogrammetric Record 23(121): 19-35.
Morin, K. and N. El-Sheimy, 2002, “Post-Mission Adjustment Methods of Airborne Laser Scanning Data”, FIG XXII International Congress, Washington, D.C.
Optech Incorporated, 2008, ALTM 3100 System Specifications, Downloaded on March 30, 2008, from http://www.optech.ca/pdf/Specs/specs_altm_3100.pdf
Schenk, T. and B. Csatho', 2002, “Fusion of LiDAR Data and Aerial Imagery for A More Complete Surface Description”, International Archives of Photogrammetry and Remote Sensing, Commission V Symposium. Melbourne. 30: 310-317.
Vexcel Corporation, 2005, UltraCam Technical Specifications.
Vosselman, G. and H.-G. Maas, 2001, “Adjustment and Filtering of Raw Laser Altimetry Data. Stockholm”, OEEPE Workshop on Airborne Laser scanning and Interferometric SAR for Detailed Digital Elevation Models: 62-73.
Vosselman, G., 2002, “On The Estimation of Planimetric Offsets in Laser Altimetry Data”, International Archives of Photogrammetry and Remote Sensing 34(3A): 375-380.
Wagner, W., A. Ullrich, V. Ducic, T. Melzer, N. Studnicka, 2006, “Gaussian Decomposition and Calibration of A Novel Small-Footprint Full-Waveform Digitising Airborne Laser Scanner”, ISPRS Journal of Photogrammetry and Remote Sensing 60(2): 100-112.
Wang, M. and Y.-H. Tseng, 2005, “Automatic 3D Feature Extraction from Structuralized LiDAR Data”, ACRS 2005, 26th Asian Conference on Remote Sensing, 7-11 Nov. 2005, Hanoi, Vietnam. (CD-ROM)
Wehr, A. and U. Lohr, 1999, “Airborne Laser Scanning─An Introduction and Overview”, ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3): 68-82.
Wolf, P. R. and B. A. Dewitt, 2000, “Elements of Photogrammetry with Applications in GIS”, 3rd ed., McGraw-Hill.
Wrobel, B., 1987, “Facets Stereo Vision (FAST Vision) - A New Approach to Computer Stereo Vision and to Digital Photogrammetry”, Conf. on Fast Processing of Photogrammetry Interlaken: 231-258.