簡易檢索 / 詳目顯示

研究生: 呂庭毅
Lu, Ting-I
論文名稱: 氧化鋁末端執行器之結構設計優化
Structural Design Optimization of Aluminum Oxide End Effector
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 有限元素法末端執行器模態分析隨機震動氧化鋁
外文關鍵詞: Finite Element Method (FEM), Aluminum Oxide (Al2O3), End Effector, ANSYS-Workbench, Modal Analysis, Random Vibration, Mechanical Loss, SpaceClaim2022 R2
相關次數: 點閱:97下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用有限元素分析軟體 ANSYS-Workbench 2022 R2軟體來分析純度99.6%的氧化鋁陶瓷末端執行器於正壓腔室傳遞晶圓時,進行結構的擺幅分析。在模擬過程中,先經由CAD軟體SpaceClaim2022R2來建立陶瓷末端執行器之模型,並於Workbench 中建立網格、機械材料特性、並且優化網格品質以及網格尺寸,接著在使用模態求解器,來得到末端執行器於不同厚度下的自然頻率與最大擺幅。在取得末端執行器的自然頻率後,進而延伸實驗至末端執行器在極限環境下,因應力集中、彈性應變等力學行為所產生的不可回復性破壞來進行分析與改善,並透過極限測試的實驗設計,來得知作業環境的參數優化方式,以避免生產過程中造成的機構破壞。最後,將氧化鋁末端執行器的工作環境條件導入隨機震動求解器中的邊界條件參數列表中,以及將機械手臂進行晶圓傳遞的各項運動條件作為振動源,接著在此條件下,利用隨機震動求解器來得到不同厚度的端執行器在相同震動源下,所產生的擺幅,並與實驗結果比較後,估算其誤差值。最後,在以實驗數據來驗證模擬結果是否為真,並以匹配結果來決定末端執行器的最佳作業厚度。

    This thesis uses the finite element NSYS-Workbench 2022 R2 software to analyze the amplitude of vibration pendulum analysis of the alumina oxide end effector with a purity of 99.6% when transferring wafers in a positive pressure chamber. In the simulation process, the CAD software SpaceClaim2022R2 is used to create the alumina oxide end effector model. Furthermore, the modal solver is used to obtain the natural frequencies of the end effector at different thicknesses. After obtaining the natural frequency of the end effector, the experiment is extended to analyze and improve the irreversible damage of the end effector under the extreme environment due to mechanical behaviors such as stress concentration and elastic strain. Through the limit test experimental design, the parameter optimization method of the working environment is known, and the mechanism damage caused in the production process is avoided. Finally, importing the working environment conditions of the alumina oxide end effector into the boundary condition parameter list in the random vibration solver, and using the movement conditions of the wafer transfer by the robotic arm as the vibration source, the random vibration solver is used to obtain the swing amplitudes of end effectors with different thicknesses under the same vibration source. After comparing with the experimental results, the error values are determined. Finally, the experimental data is used to verify whether the simulation results are true, and the matching results are used to determine the optimal working thickness of the end effector.

    摘要 I 英文延伸摘要 II 誌謝 XIV 目錄 XV 圖目錄 XVII 表目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 晶圓處理器傳遞過程之工序 2 1-2-1 晶圓傳遞效率改善與演進 3 1-2-2 傳遞效率提高所產生的副作用 6 1-2-3 溫度對曝光製程之影響 7 1-3 研究動機 8 1-3-1 氧化鋁的材料特性 9 1-3-2 末端執行器材料採用低熱傳導係數之材料 10 1-3-3 氧化鋁精密陶瓷製作工藝 12 第二章 氧化鋁末端執行器 ANSYS 模態分析之模擬流程及結果 14 2-1 材料特性參數取得 14 2-1-1 實驗設備-SHIMADZU萬能拉伸機 15 2-1-2 拉伸實驗之氧化鋁製試片規格一覽 15 2-2 末端執行器之模態分析求解設定 19 2-2-1 建立末端執行器之CAD模型 20 2-2-2 材料特性參數導入分析系統 22 2-2-3網格大小調整方式 25 2-2-4末端執行器之網格選定以及網格品質比較 26 2-3 末端執行器模態分析之邊界條件設定 30 2-3-1模擬環境邊界條件設定-末端執行器之支撐點 30 2-3-2模擬環境邊界條件設定-末端執行器之負載 31 2-4 末端執行器之模態模擬結果分析 32 2-4-1模態分析求得自然頻率 32 2-5-1 實驗設計 34 第三章 末端執行器機械損耗量測流程及結果 36 3.1 機械損耗量測系統介紹 36 3-1-1 機械損耗理論 37 3-1-2 機械損耗量測系統架構 38 3-1-3 距離量測計算公式 41 3-1-4 實驗設備介紹-振動產生器 41 3-1-5 實驗設備介紹- EMIC Pre-Charge Amplifier 6001-AHD 43 3-2 氧化鋁末端執行器之震動擺幅分析 45 第四章 末端執行器之ANSYS 隨機震動模擬 48 4-1 震動源導入隨機震動求解之邊界條件 48 4-2 PSD條件導入求解器之求解結果 50 4-3 不同厚度之氧化鋁末端執行器之穩定時間比較 51 4-4 隨機振動模擬結果與實際實驗之比對 53 4-5 結果與討論 54 第五章 結論 55 參考文獻 57 附錄A : ANSYS之末端執行器模態設定與求解 59 附錄B: 末端執行器之隨機振動求解設定與結果 69

    1. P. Metzger, N Raynaud, S. J. France, A. Jouve, N. Bresson, L. Sanchez, F. Fournel, S. Cheramy Grenoble, France “Toward a Flip-Chip Bonder Dedicated to Direct Bonding for Production Environment.”, Proceedings of IWLPC (2017).

    2. W. Xu, J. Chen, B. Wang, Y. Guan, and T. Zhang, “Thermal Modeling Analysis of SCARA Robots”, 2022 IEEE International Conference on Mechatronics and Automation (ICMA) (2022).

    3. 林青穆,「薄型QFN封裝於測試環境產生之結構破壞分析與改善」,國立成功大學工程科學研究所碩士論文(2019)。

    4. 許峻嘉,「薄型QFN封裝側面撞擊產生之破壞分析與改善」,國立成功大學工程科學研究所碩士論文(2019)。

    5. 孟慶勳,「有限元素分析凹痕圓管在循環負載下之行為」,國立成功大學工程科學研究所碩士論文(2015)。

    6. 曾詠茹,「有限元素分析不同外徑/壁厚比局部圓形凹痕圓管在循環彎曲負載下之行為」,國立成功大學工程科學研究所碩士論文(2016) 。

    7. 鄭伃汝,「有限元素法分析不同深度凹痕圓管在循環彎曲負載下之凹痕變形」,國立成功大學工程科學研究所碩士論文(2016)。

    8. 林倩如,「有限元素分析局部尖銳凹痕圓管在循環彎曲負載下之行為」,國立成功大學工程科學研究所碩士論文(2016)。

    9. H. H. Lee, “Finite Element Simulations with ANSYS Workbench 2023”, Theory and Applications, Case Studies. SDC Publications (2023).
    10. T. Irvine, “Power Spectral Density Units: [G2/Hz]”, Obtenido de Random Vibration & Power Spectral Density, http://vibrationdata. com/tutorials2/psd.pdf (2000).

    11. M. K. Thompson, and J. M. Thompson, “ANSYS Mechanical APDL for Finite Element Analysis”, Butterworth-Heinemann (2017).

    12. 王薇雅,「應用於雷射干涉重力波偵測器開發工作之單晶矽懸臂樑之機械震動性質研究」,清華大學光電工程研究所碩士論文(2013)。

    13. R. N. Youngworth, B. B. Gallagher, and B. L. Stamper, “An Overview of Power Spectral Density (PSD) Calculations”, Optical Manufacturing and Testing VI, 5869: 206-216 (2005).

    14. J. K. Lawson, C. R. Wolf, K. R. Manes, J. B. Trenholme, D. M. Aikens and R. E. E. Jr, “Specification of Optical Components Using the Power Spectral Density Function”, In: Optical Manufacturing and Testing. SPIE, 38-50 (1995).

    15. C. A. Mack, “Systematic Errors in the Measurement of Power Spectral Density”, Journal of Micro/Nanolithography, MEMS, and MOEMS, 12.3: 033016-033016 (2013).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE