| 研究生: |
鍾宛蒨 Jhong, Wan-Cian |
|---|---|
| 論文名稱: |
以電化學沉積碲化鉍薄膜於ITO玻璃基板之製備及熱電性質研究 Fabrication and Thermoelectric Properties of Bi2Te3 Thin Film on ITO Glass Substrate by Electrochemical Deposition |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 共同指導教授: |
鄭宗杰
Cheng, Tsung-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 碲化鉍 、電化學沉積 、優選方向 、熱電 |
| 外文關鍵詞: | Bi2Te3, electrochemical deposition, perferred orientation, thermoelectric |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用低電阻與低成本之ITO玻璃基板取代價格昂貴之金薄膜來沉積熱電薄膜,以電化學沉積法將Bi2Te3薄膜沉積於ITO玻璃基板上,並探討沉積時不同的Bi3+濃度及電流密度對所形成的薄膜之熱電特性的影響。製備完成的碲化鉍薄膜,以XRD來鑑定其結晶結構、以SEM觀察其微結構、以XPS分析其表面之鍵結型態與成分分析,並且作其厚度量測與電性分析。
本研究的結果顯示,沉積時電流密度增加會導致Bi2Te3薄膜中碲(Te)的含量降低,並使沉積之Bi2Te3薄膜以(110)平面為優選方向,且其表面形貌將會由片狀結構轉成針狀或團聚成針狀結構,同時提升其熱電性質。在Bi3+濃度為0.002M及電流密度為3.0 mA/cm2時,所沉積之薄膜具最佳的熱電性質,其Seebeck值為-26 μV/K且功率因子為13 μW/K。
In this study, ITO glass substrate, instead of gold thin film, was used for growing
thermoelectric films because of its low resistance property and low cost. Bi2Te3 film
was deposited on ITO glass substrate by electrochemical deposition. The
characteristics of Bi2Te3 thin films under different Bi3+ concentration and current
density during deposition were studied. The as-deposited thermoelectric thin film was
analyzed by using XRD, SEM and XPS to observe the crystal structure, microstructure,
surface bonding, and atomic composition. In addition, thickness measurement and
electrical characteristics analysis of Bi2Te3 thin film were executed.
The experiment result shows that as the depositing current density increases, the
content of tellurium (Te) in Bi2Te3 thin film decreases and the (110) plane becomes
the preferred orientation of Bi2Te3. Meanwhile, the morphology of Bi2Te3 thin film was
observed to change from sheet-like structure to needle-like or agglomerate needle-like
structure, with an enhancement of the thermoelectric property of Bi2Te3 thin film. The
higher thermoelectric property of Bi2Te3 thin film was observed at Bi3+ concentration
of 0.002M and the current density of 3.0 mA/cm2 during deposition process, with the
Seebeck coefficient and power factor being -26汹μV/K and 13 μW, respectively.
1. S. Michel, S. Diliberto, C. Boulanger, N. Stein, J. M. Lecuire, “Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters.” Journal of Crystal Growth 277, 274-283(2005).
2. Y. Miyazaki, T. Kajitani, “Preparation of Bi2Te3 films by electrodeposition.” Journal of Crystal Growth 229, 542-546 (2001).
3. M. Takahashi, Y. Oda, T. Ogino, S. Furuta, “Electrodeposition of Bi-Te alloy films.” Journal of The Electrochemical Society 140, 2550-2553 (1993).
4. L. Bu, W. Wang, H. Wang, “Electrodeposition of n-type Bi2Te3-ySey thermoelectric thin films on stainless steel and gold substrates.” Applied Surface Science 2533, 360-3365 (2007).
5. D. W. Liu, J. F. Liz, “Electrocrystallization Process during Deposition of Bi–Te Films.” Journal of The Electrochemical Society 155, 493-498 (2008)
6. H. Chaouni, J. Bessieres, A. Modaressi, J. J. Heizmann, “Texture prediction of Bi2Te3 electroplated layers using Hartman's theory of crystal growth.” Journal of Applied Electrochemistry 30, 419-427 (2000).
7.N. K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plötner, H. Gräfe, A. W. J. Fischer, “Electrochemical deposition of Bi2Te3 for thermoelectric microdevices.”Journal of Solid State Electrochemistry 7, 714-723(2003).
8. G. J. Snyder, J. R. Lim, C. K. Huang, J. P. Fleurial, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process.” Nature Materials 2, 258-531(2003).
9. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. III Goddard, J. R. Heath, “Silicon nanowires as efficient thermoelectric materials.” Nature Materials 451, 168-171(2008).
10. L. D. Hicks, M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit.” Physical Review B 47, 12727–12731 (1993).
11. Y. M. Lin, M. S. Dresselhaus, “Thermoelectric properties of superlattice nanowires.” Phsical Review B 68, 075304 (2003).
12. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices.” Physical Review B 57, 14958 (1998).
13. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ying, G. Chen, “The promise of low-dimensional thermoelectric materials.” Microscale Thermophysical Engineering 3, 89-100 (1999).
14. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597-602 (2001).
15. T. M. Tritt, “Thermoelectric materials: holey and unholey semiconductors.” Science 283, 804-805 (1999).
16. 莊達人,VLSI 製造技術, 高立出版, 1995 年。
17. D. H. Kim, E. Byon, G. H. Lee, S. Cho, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering.” Thin Solid Films 510, 148-153 (2006).
18. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, “MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor.” Thin Solid Films 315, 99-103 (1998).
19. E. Charles, E. Groubert, A. Boyer, J. Mater, “Structural and electrical properties of bismuth telluride films grown by the molecular beam technique.” Journal of Materials Science Letters 7, 575-577 (1988).
20. J. Dheepa, R. Sathyamoorthy, A. Subbarayan, “Optical properties of thermally evaporated Bi2Te3 thin films.” Journal of Crystal Growth 274, 100-105 (2005).
21. K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plötner, H. Gräfe, W. J. Fischer, “Electrochemical deposition of Bi2Te3 for thermoelectric microdevices.” Journal of Solid State Electrochemistry 7, 714-723 (2003).
22. J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz, U. Gösele, K. Nielsch, “Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition.” Nanotechnology 19, 365701 (2008).
23. F. Li, W. Wang, “Electrodeposition of BixSb2-xTey thermoelectric thin films from nitric acid and hydrochloric acid systems.” Applied Surface Science 255, 422-423 (2009).
24. R. Yamada, H. Wano, K. Uosaki, “Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface”, Langmuir 16, 5523-5525 (2000).
25. M. Paunovic, Fundamentals of electrochemical deposition, John Wiley&Sons (2006).
26. S. Michel, S. Diliberto, C. Boulanger, B. Bolle, “Effect of electrochemical deposition conditions on the crystallographic texture of bismuth telluride alloys” Journal of Crystal Growth 296, 227-233 (2006).
27. S. K. Lim, M. Y. Kim, T. S. Oh “Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications.” Thin Solid Films 517, 4199-4203 (2009).
28. E. J. Menke, M. A. Brown, Q. Li, J. C. Hemminger, R. M. Penner, “Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.” Langmuir 22, 10564-10574 (2006).
29. H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, H. Ozaki, “The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy.” Journal of Physics: Condensed Matter 12, 5607-5616 (2000).
30. R. B. Shalvoy, G. B. Fisher, P. J. Stiles, “Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission.” Physical Review B. 15, 1680-1697 (1977).
31. V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, A. Goswami, “Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy.” Journal of Electron Spectroscopy and Related Phenomena 25, 181-189 (1982).
32. A. B. Mandale, S. B. Adrinarayanan, “X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe.” Journal of electron spectroscopy and related phenomena 53, 87-95 (1990)
33. M. K. Bahl, R. L. Watson, K. J. Irgolic, “X-ray photoemission studies of tellurium and some of its compounds.” Journal of Chemical Physics 66, 5526-5535 (1977).
34. T. P. Debies, Rabalais, J. W. Chem. “X-ray photoelectron spectra and electronic structure of Bi2X3 (X = O, S, Se, Te).” Chemical Physics 20, 277-283 (1977).
35. W. Wang, Q. Huang, F. Jia, J. Zhu, Electrochemically assembled P-type Bi2Te3 nanowire arrays, Journal of Applied Phsics 96, 615-618 (2004).
36. T. S. Sun, S. P. Buchner, N. E. Byer, “Oxide and interface properties of anodic films on HgCdTe.” The Journal of Vacuum Science and Technology 17, 1067-1073 (1980).
37. A. B. Christie, J. Lee, I. Sutherland, J. M. Walls, “An XPS study of ion-induced compositional changes with group II and group IV compounds.” Applied Surface Science 15, 224-237 (1983).
校內:2020-01-01公開