簡易檢索 / 詳目顯示

研究生: 鍾宛蒨
Jhong, Wan-Cian
論文名稱: 以電化學沉積碲化鉍薄膜於ITO玻璃基板之製備及熱電性質研究
Fabrication and Thermoelectric Properties of Bi2Te3 Thin Film on ITO Glass Substrate by Electrochemical Deposition
指導教授: 崔兆棠
Choi, Siu-Tong
共同指導教授: 鄭宗杰
Cheng, Tsung-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 碲化鉍電化學沉積優選方向熱電
外文關鍵詞: Bi2Te3, electrochemical deposition, perferred orientation, thermoelectric
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用低電阻與低成本之ITO玻璃基板取代價格昂貴之金薄膜來沉積熱電薄膜,以電化學沉積法將Bi2Te3薄膜沉積於ITO玻璃基板上,並探討沉積時不同的Bi3+濃度及電流密度對所形成的薄膜之熱電特性的影響。製備完成的碲化鉍薄膜,以XRD來鑑定其結晶結構、以SEM觀察其微結構、以XPS分析其表面之鍵結型態與成分分析,並且作其厚度量測與電性分析。
    本研究的結果顯示,沉積時電流密度增加會導致Bi2Te3薄膜中碲(Te)的含量降低,並使沉積之Bi2Te3薄膜以(110)平面為優選方向,且其表面形貌將會由片狀結構轉成針狀或團聚成針狀結構,同時提升其熱電性質。在Bi3+濃度為0.002M及電流密度為3.0 mA/cm2時,所沉積之薄膜具最佳的熱電性質,其Seebeck值為-26 μV/K且功率因子為13 μW/K。

    In this study, ITO glass substrate, instead of gold thin film, was used for growing
    thermoelectric films because of its low resistance property and low cost. Bi2Te3 film
    was deposited on ITO glass substrate by electrochemical deposition. The
    characteristics of Bi2Te3 thin films under different Bi3+ concentration and current
    density during deposition were studied. The as-deposited thermoelectric thin film was
    analyzed by using XRD, SEM and XPS to observe the crystal structure, microstructure,
    surface bonding, and atomic composition. In addition, thickness measurement and
    electrical characteristics analysis of Bi2Te3 thin film were executed.
    The experiment result shows that as the depositing current density increases, the
    content of tellurium (Te) in Bi2Te3 thin film decreases and the (110) plane becomes
    the preferred orientation of Bi2Te3. Meanwhile, the morphology of Bi2Te3 thin film was
    observed to change from sheet-like structure to needle-like or agglomerate needle-like
    structure, with an enhancement of the thermoelectric property of Bi2Te3 thin film. The
    higher thermoelectric property of Bi2Te3 thin film was observed at Bi3+ concentration
    of 0.002M and the current density of 3.0 mA/cm2 during deposition process, with the
    Seebeck coefficient and power factor being -26汹μV/K and 13 μW, respectively.

    目錄 摘要 i Abstract ii 致謝 iii 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 實驗目的 5 第二章 實驗方法及步驟 7 2-1實驗材料 7 2-2 試片製備 7 2-3 溶液分析 8 2-4 結構分析與觀察 8 2-4-1厚度量測 8 2-4-2表面分析 9 2-4-3結構分析 9 2-4-4 X光光電子儀(XPS)分析 10 2-5 電性分析 11 2-5-1 電阻率(Resistivity)分析 11 2-5-2 Seebeck係數量測分析 12 第三章 結果與討論 13 3-1 Bi2Te3溶液之接觸角量測 13 3-2 Bi2Te3薄膜之成長機制 13 3-2-1成長結構分析 14 3-2-2 沉積速率與電流效率分析 16 3-3 於不同條件下沉積之Bi2Te3薄膜 17 3-3-1 不同電流密度對Bi2Te3薄膜結構影響之分析 17 3-3-2 不同Bi3+濃度對Bi2Te3薄膜結構影響之分析 19 3-3-3 成分分析 21 3-3-4 表面元素鍵結分析 22 3-3-5電性分析 24 第四章 結論 26 參考文獻 28 附錄 72 JCPDS卡號 72 自述 73

    1. S. Michel, S. Diliberto, C. Boulanger, N. Stein, J. M. Lecuire, “Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters.” Journal of Crystal Growth 277, 274-283(2005).
    2. Y. Miyazaki, T. Kajitani, “Preparation of Bi2Te3 films by electrodeposition.” Journal of Crystal Growth 229, 542-546 (2001).
    3. M. Takahashi, Y. Oda, T. Ogino, S. Furuta, “Electrodeposition of Bi-Te alloy films.” Journal of The Electrochemical Society 140, 2550-2553 (1993).
    4. L. Bu, W. Wang, H. Wang, “Electrodeposition of n-type Bi2Te3-ySey thermoelectric thin films on stainless steel and gold substrates.” Applied Surface Science 2533, 360-3365 (2007).
    5. D. W. Liu, J. F. Liz, “Electrocrystallization Process during Deposition of Bi–Te Films.” Journal of The Electrochemical Society 155, 493-498 (2008)
    6. H. Chaouni, J. Bessieres, A. Modaressi, J. J. Heizmann, “Texture prediction of Bi2Te3 electroplated layers using Hartman's theory of crystal growth.” Journal of Applied Electrochemistry 30, 419-427 (2000).
    7.N. K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plötner, H. Gräfe, A. W. J. Fischer, “Electrochemical deposition of Bi2Te3 for thermoelectric microdevices.”Journal of Solid State Electrochemistry 7, 714-723(2003).
    8. G. J. Snyder, J. R. Lim, C. K. Huang, J. P. Fleurial, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process.” Nature Materials 2, 258-531(2003).
    9. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. III Goddard, J. R. Heath, “Silicon nanowires as efficient thermoelectric materials.” Nature Materials 451, 168-171(2008).
    10. L. D. Hicks, M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit.” Physical Review B 47, 12727–12731 (1993).
    11. Y. M. Lin, M. S. Dresselhaus, “Thermoelectric properties of superlattice nanowires.” Phsical Review B 68, 075304 (2003).
    12. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices.” Physical Review B 57, 14958 (1998).
    13. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ying, G. Chen, “The promise of low-dimensional thermoelectric materials.” Microscale Thermophysical Engineering 3, 89-100 (1999).
    14. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597-602 (2001).
    15. T. M. Tritt, “Thermoelectric materials: holey and unholey semiconductors.” Science 283, 804-805 (1999).
    16. 莊達人,VLSI 製造技術, 高立出版, 1995 年。
    17. D. H. Kim, E. Byon, G. H. Lee, S. Cho, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering.” Thin Solid Films 510, 148-153 (2006).
    18. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, “MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor.” Thin Solid Films 315, 99-103 (1998).
    19. E. Charles, E. Groubert, A. Boyer, J. Mater, “Structural and electrical properties of bismuth telluride films grown by the molecular beam technique.” Journal of Materials Science Letters 7, 575-577 (1988).
    20. J. Dheepa, R. Sathyamoorthy, A. Subbarayan, “Optical properties of thermally evaporated Bi2Te3 thin films.” Journal of Crystal Growth 274, 100-105 (2005).
    21. K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plötner, H. Gräfe, W. J. Fischer, “Electrochemical deposition of Bi2Te3 for thermoelectric microdevices.” Journal of Solid State Electrochemistry 7, 714-723 (2003).
    22. J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz, U. Gösele, K. Nielsch, “Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition.” Nanotechnology 19, 365701 (2008).
    23. F. Li, W. Wang, “Electrodeposition of BixSb2-xTey thermoelectric thin films from nitric acid and hydrochloric acid systems.” Applied Surface Science 255, 422-423 (2009).
    24. R. Yamada, H. Wano, K. Uosaki, “Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface”, Langmuir 16, 5523-5525 (2000).
    25. M. Paunovic, Fundamentals of electrochemical deposition, John Wiley&Sons (2006).
    26. S. Michel, S. Diliberto, C. Boulanger, B. Bolle, “Effect of electrochemical deposition conditions on the crystallographic texture of bismuth telluride alloys” Journal of Crystal Growth 296, 227-233 (2006).
    27. S. K. Lim, M. Y. Kim, T. S. Oh “Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications.” Thin Solid Films 517, 4199-4203 (2009).
    28. E. J. Menke, M. A. Brown, Q. Li, J. C. Hemminger, R. M. Penner, “Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.” Langmuir 22, 10564-10574 (2006).
    29. H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, H. Ozaki, “The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy.” Journal of Physics: Condensed Matter 12, 5607-5616 (2000).
    30. R. B. Shalvoy, G. B. Fisher, P. J. Stiles, “Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission.” Physical Review B. 15, 1680-1697 (1977).
    31. V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, A. Goswami, “Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy.” Journal of Electron Spectroscopy and Related Phenomena 25, 181-189 (1982).
    32. A. B. Mandale, S. B. Adrinarayanan, “X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe.” Journal of electron spectroscopy and related phenomena 53, 87-95 (1990)
    33. M. K. Bahl, R. L. Watson, K. J. Irgolic, “X-ray photoemission studies of tellurium and some of its compounds.” Journal of Chemical Physics 66, 5526-5535 (1977).
    34. T. P. Debies, Rabalais, J. W. Chem. “X-ray photoelectron spectra and electronic structure of Bi2X3 (X = O, S, Se, Te).” Chemical Physics 20, 277-283 (1977).
    35. W. Wang, Q. Huang, F. Jia, J. Zhu, Electrochemically assembled P-type Bi2Te3 nanowire arrays, Journal of Applied Phsics 96, 615-618 (2004).
    36. T. S. Sun, S. P. Buchner, N. E. Byer, “Oxide and interface properties of anodic films on HgCdTe.” The Journal of Vacuum Science and Technology 17, 1067-1073 (1980).
    37. A. B. Christie, J. Lee, I. Sutherland, J. M. Walls, “An XPS study of ion-induced compositional changes with group II and group IV compounds.” Applied Surface Science 15, 224-237 (1983).

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE