| 研究生: |
吳晴雯 Wu, ching-wen |
|---|---|
| 論文名稱: |
添加鋁矽酸鹽礦物於多微孔性(MPC)碳化矽陶瓷之製備研究 Micro Porous SiC Ceramics(MPC) prepared with Kaolinate additives |
| 指導教授: |
申永輝
Shen, Yun-Hwei 溫紹炳 Wen, Shaw-Bing 林志朋 Lin, Chih-Peng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 孔洞生成劑 、高嶺土 、碳化矽(SiC)陶瓷 、燒結 |
| 外文關鍵詞: | Kaolinite, sinter, silicon carbide, pore former |
| 相關次數: | 點閱:129 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用不同粒徑的綠色碳化矽粉末,以固定比例10 wt%聚乙烯醇縮丁醛(PVB)作為孔洞生成劑和黏結劑,添加不同比例的高嶺土原礦做為燒結助劑,並以酒精作為介質來製備多微孔性碳化系陶瓷。燒結時以Al2O3粉末覆蓋坯體,置於高溫爐中,以1300℃持溫3小時,成功在常壓下製備多微孔性碳化矽陶瓷。
研究中PVB先與SiC粉末混合均勻研磨造粒,再加入高嶺土粉末繼續研磨混合均勻,過100目篩,再以單軸加壓50 MPa,可得生胚,將坯體埋入Al2O3粉末中,以500℃燒除PVB生成孔洞後,再加溫至1300℃持溫3小時,得到不同之碳化矽燒結體。燒結體藉由XRD分析主要晶相及二次相成分及數量,以SEM觀察燒結體表面顯微結構、孔洞大小以及連通情況,以阿基米得法求得燒結體視密度及開放性孔洞率,以萬能試驗機測得燒結體抗壓強度,並以熱傳導分析儀量測試片熱傳導值。
研究結果顯示在1300℃持溫3小時的燒結環境下,其開放性孔洞率與燒結體視密度成同步變化的趨勢,以試片6S5K開放性孔洞率26.6%為最高值,其視密度為1.678g/cm3。
The study was putting different quantities of Kaolinite and 10 wt% PVB into six different kinds of particle of powder to produce the micro porous SiC ceramic. We used the binder / pore former PVB, which is 10 wt%,and Kaolinite was add to be the sintering aid. The bulk is covered with Al2O3 in the heating furnace while sintering, we heat at 1300℃ and hold 3 hours. We have then produces the micro porous SiC ceramic successfully within a low constant temperature.
At first, we added the PVB and mixed it with the powder of SiC. After drying, we ground it into a powder, and then added Kaolinite as the sintering aid. After pass through 100 mesh, the powder was uniaxially pressed at 50 MPa and the result was green bodies. Cover up the green bodies with Al2O3 powder, burn out the PVB to form pores by 500 ℃, sinter them and heat the temperature to 1300℃ for 3 hours. Therefore, the result was different SiC sintered bodies. We used XRD to identify the produced phase and SEM to observe the fractured surfaces to discover the grain morphology of sintered bodies. By using the Archimedes, we got the apparent density and open pore. We got the compressive strength by the Material Test System as well.
The research showed that : under the condition of sintering at 1300 ℃ for 3 hours, the open pore and the Apparent Density are showing that there is a trend in synchronized variation. They had the same trend in the synchronized variation. The open pore is 26.6 % of the sample of 6S5K is the highest rate. Its Apparent Density is 1.678g/cm3 。
1.汪建民等, 陶瓷技術手冊. 中華民國粉末冶金學會 中華民國產業發展協會: p 748~749.
2.http://www.highdiy.com/html/oc/theory/328.shtml
3.林博文, 89年工程陶瓷應用科技研討會論文集. 國立成功大學材料科學及工程學系 ed.; 國科會工程科技推展中心: 2000; p 155.
4.李紹民, 奈米碳化矽/氮化矽複合陶瓷之製備、微結構及機械性質之研究. In 國立成功大學材料科學及工程研究所: 台南, 2002.
5.黃忠良, 工藝陶瓷(基礎研究.應用技術). p 16~18.
6.Ishizka, K.; Komarneri, S.; Nanko, M., porous Materials-Process technology and Applications. The Netherlands: 1998; p 181-182.
7.Boaro, M.; Vohs, J. M.; Gorte, R. J., Synthesis of highly porous yttria-stabilized zirconia by tape-casting methods. Journal of the American Ceramic Society 2003, 86, (3), 395-400.
8.El-Ghannam, A. R., Advanced bioceramic composite for bone tissue engineering:design principles and structure-bioactivity relationship. J.Biomed. Mater. Res.Part A 2004, 69A, (3), 490-501.
9.Chi, W.; Jiang, D.; Huang, Z.; Tan, S., Sintering behavior of porous SiC ceramics. Ceramics International 2004, 30, (6), 869-874.
10.Qian, J.-M.; Jin, Z.-H.; Wang, X.-W., Porous SiC ceramics fabricated by reactive infiltration of gaseous silicon into charcoal. Ceramics International 2004, 30, (6), 947-951.
11.Zhu, S.; Xi, H.-A.; Li, Q.; Wang, R., In Situ Growth of β-SiC Nanowires in Porous SiC Ceramics. Journal of the American Ceramic Society 2005, 88, (9), 2619-2621.
12.Ding, S.; Zhu, S.; Zeng, Y.; Jiang, D., Effect of Y2O3 addition on the properties of reaction-bonded porous SiC ceramics. Ceramics International 2006, 32, (4), 461-466.
13.劉典謨, 多孔陶瓷簡介. 材料社會 1993, 第77期, 41-42.
14.Koho, J. K. T., NGK Spark Plug Co. Let. 1984, JP59, (83), 972.
15.Yang, J.-F.; Zhang, G.-J.; Ohji, T., Fabrication of Low-Shrinkage,Porous Silicon Nitride Ceramics by Addition of a Small Amount of Carbon. Journal of the American Ceramic Society 2001, 84, (7), 1639-1641.
16.Wang, H. T.; Liu, X. Q.; Meng, G. Y., Porous [alpha]-Al2O3 ceramics prepared by gelcasting. Materials Research Bulletin 1997, 32, (12), 1705-1712.
17.Gu, Y.; Liu, X.; Meng, G.; Peng, D., Porous YSZ ceramics by water-based gelcasting. Ceramics International 1999, 25, (8), 705-709.
18.Tanabe, Y.; Sakamoto, T.; Okada, N.; Akatsu, T.; Yasuda, E.; Takasu, S.; Sabato, T., Effect of gravity on titanium carbide foams by self-propagation high- temperature synthesis. Journal of materials research 1999, 14, (4), 1516-1523.
19.Lyckfeldt, O.; Ferreira, J. M. F., Processing of porous ceramics by `starch consolidation'. Journal of the European Ceramic Society 1998, 18, (2), 131-140.
20.R.C.E.Guy; J.R.G.Evans, British ceramic transactions 1997, 96, (4), 165-169.
21.W.J.Chao; K.S.Chou, Key engineering materials 1995, 114, 93-108.
22.D.M.Liu, Control of pore geometry on influencing the mechanical property of porous hydroxyapatite bioceramic. Journal of materials science letters 1996, 15, 419-421.
23.Kim, B.-H.; Na, Y.-H., Fabrication of fiber-reinforced porous ceramics of Al2O3-mullite and SiC-mullite systems. Ceramics International 1995, 21, (6), 381-384.
24.Zhu, X.; Jiang, D.; Tan, S., Preparation of silicon carbide reticulated porous ceramics. Materials Science and Engineering A 2002, 323, (1-2), 232-238.
25.Zhu, S.; Ding, S.; Xi, H. a.; Wang, R., Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Materials Letters 2005, 59, (5), 595-597.
26.Ding, S.; Zeng, Y.-P.; Jiang, D., Thermal shock resistance of in situ reaction bonded porous silicon carbide ceramics. Materials Science and Engineering: A 2006, 425, (1-2), 326-329.
27.Yao, X.; Tan, S.; Huang, Z.; Jiang, D., Effect of recoating slurry viscosity on the properties of reticulated porous silicon carbide ceramics. Ceramics International 2006, 32, (2), 137-142.
28.Zhu, S.; Ding, S.; Xi, H. a.; Li, Q.; Wang, R., Preparation and characterization of SiC/cordierite composite porous ceramics. Ceramics International 2007, 33, (1), 115-118.
29.陳姿樺, 製備多孔性碳化矽陶瓷之研究. In 國立成功大學資源工程學系: 台南, 2007.
30.陳永鋒, 高嶺土–氧化鋁陶瓷中富鋁紅柱石之形成. In 國立成功大學材料科學及工程學系博士論文: 2004.
31.Wu, S.; Claussen, N., ibid 1991, 74, 2460.
32.Sacks, M. D.; Wang, K.; Scheiffele, G. W.; Bozkurt, N., ibid 1997, 80, 663.
33.Brindley, G. W.; Nakahira, M., The kaolinite mullite reaction series: I. A survey of oustanding problems. journal of the American Ceramic Society 1959, 42.
34.Brindley, G. W.; Nakahira, M., The kaolinite mullite reaction series: II.Metakaolin. Journal of the American Ceramic Society 1959, 42, 314.
35.Brindley, G. W.; Nakahira, M., The kaolinite mullite reaction series: III.The high-temperature phases. journal of the American Ceramic Society 1959, 42.
36.梁育彰, 鈦酸鋅之低溫共燒與介電性質之研究. In 國立成功大學材料科學及工程學系: 2005.
37.Coble, R. L., Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of applied physics 1961, 32, (5), 787~792.
38.R.M.german, Liquid Phase Sintering. Plenum Press Inc.: 1985; p 6~8.
39.K.Watari; Hwang, H. J.; Toriyama, M.; Kanzaki, S., Low-Temperature Sintering and High Thermal Conductivity of YLiO2-Doped AlN Ceramics. Journal of the American Ceramic Society 1996, 79, (7), 1979~1981.