簡易檢索 / 詳目顯示

研究生: 劉玟妦
Liu, Wen-Feng
論文名稱: 血清飢餓誘導人類肝內膽道癌細胞表現血管內皮生長因子C
Serum Starvation Induces VEGF-C Expression in Human Intrahepatic Cholangiocarcinoma Cells
指導教授: 陳立宗
Chen, Li-Tzong
黃暉升
Huei-Sheng, Huang
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 39
中文關鍵詞: 膽道癌C型血管內皮生長因子淋巴生成
外文關鍵詞: serum starvation, VEGF-C, lymphangiogenesis
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膽道癌依照癌細胞生長的部位區分為肝內膽管癌與肝外膽管癌,無論是哪一型的膽管癌預後皆不甚理想。預後不理想的原因可能與膽道癌目前尚無有效的治療藥物有關,經影像醫學確診後,通常為手術切除癌症病灶,再配合化學藥物治療。此外,膽道癌通常伴隨淋巴轉移,但目前尚未完全解開發生淋巴轉移的原因。從我們的實驗中觀察到,當移除細胞培養基中的血清時,癌細胞內的C型血管內皮生長因子(VEGF-C)的蛋白質表現量會增加,隨著移除時間越長,蛋白的表現量增加越多。並且釋放出可溶性的C型血管內皮生長因子到培養基中,相較於未移除血清的組別在完全移除的組別中偵測到更高量的表現。在先前的報導中指出C型血管內皮生長因子與癌細胞的轉移相關,而最近的研究也表明C型血管內皮生長因子與血管內皮生長因子接受器結合後活化淋巴管增生因而發生淋巴轉移或其他器官轉移。因此,我們推測隨著腫瘤增長,越接近中心的腫瘤細胞越無法從腫瘤周邊的血管得到充足的血液支持,因而發展出對抗較差的腫瘤微環境的機制。我們選用肝內膽管癌細胞株(SNU-1079和HuH28)作為研究的模型。由我們的實驗數據可得知癌細胞透過降低C型血管內皮生長因子蛋白質的降解釋放較大量的因子到培養基中,促進了癌細胞的自身的遷徙能力。此外,我們也發現培養基中的C型血管內皮生長因子對於促進淋巴內皮細胞的遷徙能力和淋巴管增生有正向的相關。未來可以再加入肝內膽管癌細胞作為研究模型,以了解是否膽道癌細胞都有因應惡劣生存條件所發展出的生存機制。透過我們的研究,再結合臨床上的觀察,或許可以釐清為何膽道癌經常伴隨著淋巴轉移,將來亦可應用於膽道癌藥物的研究開發或是作為診斷轉移的生物標識。

    Lymphatic system is important for the maintenance of fluid homeostasis, transportation of macro- molecules and immune cells trafficking. Most of lymphatic networks are formed during embryonic development; while neo-lymphangiogenesis occurs in certain pathological conditions, for instance inflammation and tumorigenesis. Expression of vascular endothelial growth factor-C (VEGF-C), one of the major mediators involved in lymphangiogenesis, in the cancer cells was noted in 30% of resected intra-hepatic cholangiocarcinomas (iCCA) that was associated with the presence of lymphatic invasion, lymph node metastasis and significantly inferior survival as compared to those tumors without VEGF-C expression cancer cells (Aishima, Modern Pathol 2008). However, the molecular mechanisms of regulating VEGF-C expression and its biological function in iCCA are seldom reported. In current study, we found all two tested iCCA cell lines (SNU1079 and Huh28) do not only express and secrete VEGF-C but also express VEGFR3 as detected by either Western blot or ELISA. The expression and secretion of VEGF-C in all three iCCA cells were enhanced by serum starvation in a dose (0% and 2% vs. 10%)- and largely time (0, 0.5, 1, 2, 6 and 24 hrs)-dependent manners. Of the latter, the increase of VEGF-C was noted as early as 0.5 hr and reaching plateau at 6 hrs after serum starvation. The serum starvation-induced increase of VEGF-C protein level was accompanied with a modest increase of mRNA level (<50% by quantitative RT-PCR) but a significantly prolonged VEGF-C half-life, 1-2.5 hrs in 10% serum vs. not reached at 6 hrs in 0% serum, after cycloheximide treatment. Serum starvation also facilitated the transwell migration activity of SNU1079 and Huh28, which could be partially alleviated by VEGF-C targeted, multi-tyrosine kinase inhibitor. More specific pharmacological and/or genomic approaches will be required to confirm the role of VEGF-C/VEGFR3 axis in enhancing iCCA migration under serum starvation condition. However, our findings suggest a novel mechanism of cancer cell-derived VEGF-C in promoting lymphatic invasion and lymph node metastasis in iCCA that deserves further exploration.

    中文摘要 -----------------------------------------------------------------------------------------------ii Abstract -------------------------------------------------------------------------------------------------iv Acknowledgement -----------------------------------------------------------------------------------vi List of Tables -------------------------------------------------------------------------------------------ix List of Figures ------------------------------------------------------------------------------------------x Abbreviations ------------------------------------------------------------------------------------------xi Chapter 1 Introduction and Background 1.1 Intrahepatic Cholangiocarcinoma ---------------------------------------- 1 1.2 VEGF-C and VEGFR3 --------------------------------------------------------- 2 1.3 Lymphangiogenesis and Lymph Node Metastasis -------------------- 4 1.4 Serum Starvation ------------------------------------------------------------- 4 1.5 Hypothesis --------------------------------------------------------------------- 5 2 Materials and Methods 2.1 Cell Culture -------------------------------------------------------------------- 6 2.2 Western Blotting ------------------------------------------------------------- 6 2.3 mRNA analysis ---------------------------------------------------------------- 7 2.4 Proliferation Assay ----------------------------------------------------------- 8 2.5 Cell Migration Assay ---------------------------------------------------------8 2.6 LECs Tube Formation Assay ------------------------------------------------9 3 Results 3.1 Effects of Serum Starvation on iCCA Cells on VEGF-C mRNA and Protein Expression. -----------------------------------------------------------10 3.2 Variant serum concentration differentially influenced cell proliferation and phenotype. ---------------------------------------------- 12 3.3 Serum depletion induced cells migration ability. ---------------------14 3.4 Downregulation Knockdown of VEGF-C weakens the enhancement of cell migration induced by serum starvation. ---16 3.5 The soluble form of VEGF-C was increased in the serum depletion medium. ------------------------------------------------------------------------18 3.6 Serum depletion facilitated stabilization of VEGF-C protein expression. ---------------------------------------------------------------------20 3.7 The effects of soluble VEGF-C production from SNU-1079 on proliferation and migration ability of LECs. ----------------------------22 3.8 Secreted VEGF-C form SNU-1079 promotes tube formation of LECs. -----------------------------------------------------------------------------25 4 Discussion -----------------------------------------------------------------------------------27 References ---------------------------------------------------------------------------------------------29 Appendix -----------------------------------------------------------------------------------------------32

    1. Aishima, S., Nishihara, Y., Iguchi, T., Taguchi, K., Taketomi, A., Maehara, Y., and Tsuneyoshi, M. (2008). Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod Pathol 21, 256-264.
    2. Blechacz, B. (2017). Cholangiocarcinoma: Current Knowledge and New Developments. Gut Liver 11, 13-26.
    3. Dufies, M., Giuliano, S., Ambrosetti, D., Claren, A., Ndiaye, P. D., Mastri, M., Moghrabi, W., Cooley, L. S., Ettaiche, M., Chamorey, E., et al. (2017). Sunitinib Stimulates Expression of VEGFC by Tumor Cells and Promotes Lymphangiogenesis in Clear Cell Renal Cell Carcinomas. Cancer Res 77, 1212-1226.
    4. Haga, H., and Patel, T. (2015). Molecular diagnosis of intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci 22, 114-123.
    5. Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., Jeltsch, M., Jackson, D. G., Talikka, M., Rauvala, H., et al. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74-80.
    6. Koch, S., and Claesson-Welsh, L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2, a006502.
    7. Michelle L Varney, R. K. S. (2015). VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. Am J Cancer Res 5, 616-628.
    8. Moussion, C., and Turley, S. J. (2017). Tumour lymph vessels boost immunotherapy. Nature 552, 340-342.
    9. Patel, T. (2001). Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 33, 1353-1357.
    10. Rahnemai-Azar, A. A., Weisbrod, A., Dillhoff, M., Schmidt, C., and Pawlik, T. M. (2017). Intrahepatic cholangiocarcinoma: Molecular markers for diagnosis and prognosis. Surg Oncol 26, 125-137.
    11. Rauniyar, K., Jha, S. K., and Jeltsch, M. (2018). Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front Bioeng Biotechnol 6, 7.
    12. Shin, H. R., Oh, J. K., Masuyer, E., Curado, M. P., Bouvard, V., Fang, Y. Y., Wiangnon, S., Sripa, B., and Hong, S. T. (2010). Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 101, 579-585.
    13. Tao, L. Y., Cai, L., He, X. D., Liu, W., and Qu, Q. (2010). Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am Surg 76, 1210-1213.
    14. Visuri, M. T., Honkonen, K. M., Hartiala, P., Tervala, T. V., Halonen, P. J., Junkkari, H., Knuutinen, N., Yla-Herttuala, S., Alitalo, K. K., and Saarikko, A. M. (2015). VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 18, 313-326.
    15. Zhang, L., Zhou, F., Han, W., Shen, B., Luo, J., Shibuya, M., and He, Y. (2010). VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 20, 1319-1331.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE