| 研究生: |
劉一平 Liu, I-Ping |
|---|---|
| 論文名稱: |
以自組裝單分子膜及熱處理效應促進染料及半導體敏化太陽能電池效能之探討 Performance Enhancement of Dye- and Semiconductor- Sensitized Solar Cells by Self-Assembly Monolayer and Heat Treatment |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 染料敏化太陽能電池 、自組裝分子 、半導體敏化太陽能電池 、硫化鎘 、熱處理 |
| 外文關鍵詞: | Dye-sensitized solar cells, Self-assembly molecule, Cadmium sulfide, Semiconductor-sensitized solar cells, Heat treatment |
| 相關次數: | 點閱:133 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在分別以自組裝分子及熱處理效應來提升染料及半導體敏化太陽能電池之光電轉換效能。文中首先以市售P25二氧化鈦奈米顆粒及旋轉塗佈法於ITO導電玻璃上製備薄膜光電極,並藉由XRD、SEM及AlphaStep分析薄膜特性。另外,藉由自組裝分子之雙官能基特性將染料分子與二氧化鈦連結,以製備染料敏化光電極,同時探討不同自組裝分子對元件效能所造成之影響。最後,以SILAR方式於二氧化鈦薄膜中沉積硫化鎘(CdS)半導體敏化劑,並探討陰離子溶液濃度、熱處理溫度與時間、CdS敏化劑層數及入射光強度等實驗變因對元件光電轉換效能表現之影響。
實驗結果顯示,本研究所製備之二氧化鈦薄膜是由奈米顆粒緻密堆積而成,從XRD分析結果可知其晶相主要以銳鈦礦為多數。比較APEDS、APMDS及APTMS三種自組裝分子後發現,三種分子皆可產生分子偶極矩以提升二氧化鈦之能階,其中經由10分鐘APMDS改質後之元件可使光電轉換效能從6.133%提升至6.922%。由暗電流分析結果顯示,三種自組裝分子皆可減少元件中的電荷再結合行為;此外,經APMDS改質後所得UV-Vis曲線會產生藍位移之現象;最後,藉由電化學阻抗分析可證明APMDS表面改質可提升元件電荷再結合阻力及改變二氧化鈦能階位置。
另外,由實驗結果可知,陰離子溶液濃度會影響CdS於二氧化鈦表面上之披覆程度,而不同熱處理條件對電池元件效能亦會有一定程度之影響。將各製備條件所得元件進行比較後可得知,以SILAR程序製備8層CdS半導體敏化劑,經過325°C加熱板進行3分鐘退火程序後所得元件,因CdS內部缺陷減少及較佳的激發電子能力,在AM 1.5G一個太陽光照度下之光電轉換效率高達1.404%。此外,藉由改變入射光強度後可得知,一般熱處理之元件其光電轉換效率會隨著入射光強度減弱而下降;然而高溫熱處理後之元件效能表現則有相反之趨勢,於0.1個太陽光照度下,其光電轉換效率高達2.246%,為目前已知轉換效能最佳的CdS敏化太陽能電池。
總結而言,自組裝分子會改變二氧化鈦之能階位置以及減少元件中的電荷再結合情形,進而影響染料敏化元件之光電轉換效能。而適當控制熱處理條件,可使CdS敏化劑激發更多電子並有利於元件中的電子轉移,因此可提高半導體敏化元件之整體效率。研究結果亦顯示,經退火後之CdS半導體材料在後續太陽光電發展上具有極大之潛力。
In this thesis, the self-assembly monolayer and heat treatment approaches were employed to improve the power conversion performance of dye- and semiconductor- sensitized solar cells, respectively. TiO2 thin films, which contained TiO2 nanoparticles and were analyzed by the XRD, SEM, and AlphaStep, were utilized to adsorbing the sensitizer.
By using self-assembly molecules (SAMs) with bifunctional groups, dye molecules could be assembled on to TiO2 surface. The results show that the band edge of TiO2 was changed by dipole moment effect resulted from SAMs, such as APEDS, APMDS, and APTMS. The best enhancement in power conversion efficiency, from 6.133% to 6.922%, could be obtained in the device modified by the 10 min treatment of APMDS. The dark current analysis indicates that the charge recombination at the photoelectrode / electrolyte interface could be suppressed by utilizing these SAMs. Also, a blueshift phenomenon was observed in the UV-Vis absorption curve for the APMDSmodified electrode. Finally, by the analysis of electrochemical impedance spectroscopy, it demonstrated that APMDS surface modification increases the charge recombination resistance and shifts the energy level of TiO2.
The coverage area of cadmium sulfide (CdS) on the TiO2 thin film was influenced by the concentration of anion solution in SILAR process. It was found that the device fabricated by the optimal conditions (CdS (8), 325°C annealing for 3 minutes) showed a cell efficiency of 1.404% under 1 sun illumination (AM 1.5G). This performance was attributed to the lower defects contained in the CdS crystal which improves the ability to the charge transfer. The cell efficiency decreased with the descending of light intensity in the device prepared by normal heat treatment. However, the tendency was opposite in the device fabricated by optimal annealing process. Under 0.1 sun illumination, the power conversion efficiency could reach 2.246% in the annealed device. To our knowledge, this is the best efficiency reported for CdS-sensitized solar cells till .
In conclusion, SAMs modification at electrode surface could enhance the performance of dyesensitized solar cells by shifting the energy level of TiO2 and inhibiting the charge recombination. The overall performance of semiconductorsensitized solar device could be improved by exciting more electrons from CdS sensitizer and an efficient charge transfer. It revealed that the annealed CdS semiconductor have a great potential to be utilized in the development of photovoltaic.
[1] R. E. Smalley, “Future Global Energy Prosperity: The Terawatt Challenge,” MRS Bulletin, 30, 412-417 (2005).
[2] A. Cho, “Energy’s Tricky Tradeoffs,” Science, 329, 786-787 (2010).
[3] M. Grätzel, “Powering the Planet,” Nature, 403, 363 (2000).
[4] J. Zhao, A. Wang, and M. A. Green, “19.8% Efficient “Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells,” Appl. Phys. Lett., 73(14), 1991-1993 (1998).
[5] J. Zhao, A. Wang, and M. A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates,” Prog. Photovolt: Res. Appl., 7, 471-474 (1999).
[6] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar Cell Efficiency Tables (version 37),” Prog. Photovolt: Res. Appl., 19, 84-92 (2011).
[7] R. R. King,D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,” Appl. Phys. Lett., 90, 183516 (2007).
[8] G. S. Hermann, Y. Gao, T. T. Tran, and J. Osterwalder, “X-ray Photoelectron Diffraction Study of an Anatase Thin Film: TiO2 (001),” Surf. Sci., 447, 201-211 (2000).
[9] A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., 95, 735-758 (1995).
[10] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, Jr., and J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K,” J. Am. Chem. Soc., 109(12), 3639-3646 (1987).
[11] S. D. Mo and W. Y. Ching, “Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase, and Brookite,” Phys. Rev. B, 51(19), 13023-13032 (1995).
[12] U. Diebold, “The Surface Science of Titanium Dioxide,” Surf. Sci. Rep., 48, 53-229 (2003).
[13] Phase Diagrams for Ceramists Figure 4150-4999, The American Ceramic Society, Inc., 76 (1975).
[14] C. F. Chi, S. Y. Liau, and Y. L. Lee, “The Heat Annealing Effect on the Performance of CdS/CdSe-sensitized TiO2 Photoelectrodes in Photochemical Hydrogen Generation,” Nanotechnology, 21, 025202 (2010).
[15] Y. L. Lee, C. F. Chi, and S. Y. Liau, “CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell,” Chem. Mater., 22, 922927 (2010).
[16] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure,” Adv. Mater., 15(7-8), 624-627 (2003).
[17] M. Paulose1, O. K. Varghese, G. K. Mor, C. A. Grimes, and K. G. Ong, “Unprecedented Ultra-High Hydrogen Gas Sensitivity in Undoped Titania Nanotubes,” Nanotechnology, 17, 398-402 (2006).
[18] Z. Zhang, Z. Gong and Y. Yang, “Electrochemical Performance and Surface Properties of Bare and TiO2-Coated Cathode Materials in Lithium-Ion Batteries,” J. Phys. Chem. B, 108, 17546 (2004).
[19] O. K. Varghese, M. Paulose1, and C. A. Grimes, “Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells,” Nat. Nanotechnol., 4, 592-597 (2009).
[20] M. Grätzel, “Dye-Sensitized Solar Cells,” J. Photochem. Photobiol. C-Photochem. Rev., 4, 145-153 (2003).
[21] S. Chuangchote, T. Sagawa, and S. Yoshikawaa, “Efficient Dye-Sensitized Solar Cells Using Electrospun TiO2 Nanofibers as a Light Harvesting Layer,” Appl. Phys. Lett., 93, 033310 (2008).
[22] X. Feng, K. Shankar, O. K. Varghese, M. Paulose1, T. J. Latempa, and C. A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Lett., 8(11), 3781-3786 (2008).
[23] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications,” Sol. Energy Mater. Sol. Cells, 90, 2011-2075 (2006).
[24] B. O’Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353, 737-740 (1991).
[25] C. H. Liang, H. Y. Chang, T. W. Liou, and H. I. Chen, “Preparation and Characterization of Sol-Gel-Derived TiO2/ITO Photoelectrodes,” Surf. Rev. Lett., 15, 161-168 (2008).
[26] M. A. Khan, H. T. Jung, and O. Bong Yang, “Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes,” J. Phys. Chem. B, 110, 6626-6630 (2006).
[27] G. K. Mor, O. K. Varghese, M. Paulose, and C. A. Grimes “Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films,” Adv. Funct. Mater., 15, 1291-1296 (2005).
[28] C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte,” J. Phys. Chem. B, 109, 15754-15759 (2005).
[29] M. Grätzel, “Photoelectrochemical Cells,” Nature, 414, 338-344 (2001).
[30] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem., 44, 6841-6851 (2005).
[31] B. Wang and L. L. Kerr, “Dye Sensitized Solar Cells on Paper Substrates,” Sol. Energy Mater. Sol. Cells, 95, 2531-2535 (2011).
[32] X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “A Flexible Photoelectrode for CdS/CdSe Quantum Dot-Sensitized Solar Cells (QDSSCs),” Chem. Commun., 47, 2664-2666 (2011).
[33] T. Miyasaka, “Toward Printable Sensitized Mesoscopic Solar Cells: Light-Harvesting Management with Thin TiO2 Films,” J. Phys. Chem. Lett., 2, 262-269 (2011).
[34] C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, and J. M. Wu, “Improved Performance of Flexible Dye-Sensitized Solar Cells by Introducing an Interfacial Layer on Ti Substrates,” J. Mater. Chem., 21, 5114-5119 (2011).
[35] S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, Md. K. Nazeeruddin, and M. Grätzel, “High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode,” Chem. Commun., 38, 4004-4006 (2006).
[36] T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, “Highly Efficient Plastic Substrate Dye-Sensitized Solar Cells Using a Compression Method for Preparation of TiO2 Photoelectrodes,” Chem. Commun., 45, 4767-4769 (2007).
[37] H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, “Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells,” J. Photochem. Photobiol. A-Chem., 213, 30-36 (2010).
[38] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire Dye-Sensitized Solar Cells,” Nat. Mater., 4, 455-459 (2005).
[39] Md. A. Hossain, J. R. Jennings, Z. Y. Koh, and Q. Wang, “Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities,” ACS Nano, 5(4), 3172-3181 (2011).
[40] P. Guo and M. A. Aegerter, “Ru(II) Sensitized Nb2O5 Solar Cell Made by the Sol-Gel Process,” Thin Solid Films, 351, 290-294 (1999).
[41] J. Jiu, S. Isoda, F. Wang, and M. Adachi, “Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film,” J. Phys. Chem. B, 110, 2087-2092 (2006).
[42] J. Ferber and J. Luther, “Computer Simulations of Light Scattering and Absorption in Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 54, 265-275 (1998).
[43] S. Ito, P. Chen, P. Comte, Md. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, “Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells,” Prog. Photovolt: Res. Appl., 15, 603-612 (2007).
[44] Y. Li, J. Hagen, W. Schaffrath, P. Otschik, and D. Haarer, “Titanium Dioxide Films for Photovoltaic Cells Derived From a Sol-Gel Process,” Sol. Energy Mater. Sol. Cells, 56, 167-174 (1999).
[45] Md. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc., 115, 6382-6390 (1993).
[46] Md. K. Nazeeruddin, P. Péchy, and M. Grätzel, “Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex,” Chem. Commun., 18, 1705-1706 (1997).
[47] Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” J. Am. Chem. Soc., 123, 1613-1624 (2001).
[48] Md. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” J. Am. Chem. Soc., 127, 16835-16847 (2005).
[49] A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics,” Acc. Chem. Res., 33, 269 (2000).
[50] M. Grätzel, “Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells,” J. Photochem. Photobiol. A-Chem., 164, 3-14 (2004).
[51] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, Md. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness,” Adv. Mater., 18, 1202-1205 (2006).
[52] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel, “High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye,” Chem. Commun., 41, 5194-5196 (2008).
[53] H. Zhou, L. Wu, Y. Gao, and T. Ma, “Dye-Sensitized Solar Cells Using 20 Natural Dyes as Sensitizers,” J. Photochem. Photobiol. A-Chem., 219, 188-194 (2011).
[54] M. S. Roy, P. Balraju, M. Kumar, and G. D. Sharma, “Dye-Sensitized Solar Cell Based on Rose Bengal dye and Nanocrystalline TiO2,” Sol. Energy Mater. Sol. Cells, 92, 909-913 (2008).
[55] G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Suttles in Dye Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 70, 85-101 (2001).
[56] C. Zhang, Y. Huang, Z. Huo, S. Chen, and S. Dai, “Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability,” J. Phys. Chem. C, 113, 21779-21783 (2009).
[57] P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 25451-25454 (2006).
[58] H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity,” J. Phys. Chem. C, 112, 11600-11608 (2008).
[59] H. J. Lee, P. Chen, S. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator,” Laugmuir, 25(13), 7602-7608 (2009).
[60] H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and Md. K. Nazeeruddin, “Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,” Nano Lett., 9(12), 4221-4227 (2009).
[61] S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance Improvement of Sb2S3-Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte,” Energy Environ. Sci., 4, 2799-2802 (2011).
[62] Y. L. Lee and C. H. Chang, “Efficient Polysulfide Electrolyte for CdS Quantum Dot-Sensitized Solar Cells,” J. Power Sources, 185, 584-588 (2008).
[63] B. Miller and A. Heller, “Semiconductor Liquid Junction Solar Cells Based on Anodic Sulphide Films,” Nature, 262, 680-681 (1976).
[64] G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, and K. Tohji, “Optimization of a Two-Compartment Photoelectrochemical Cell for Solar Hydrogen Production,” Int. J. Hydrog. Energy, 28, 919-926 (2003).
[65] Y. Bessekhouad, M. Mohammedi, and M. Trari, “Hydrogen Photoproduction from Hydrogen Sulfide on Bi2S3 Catalyst,” Sol. Energy Mater. Sol. Cells, 73, 339-350 (2002).
[66] B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of Recent Progress in Solid-State Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 90, 549-573 (2006).
[67] Y. L. Lee, Y. J. Shen, and Y. M. Yang, “A Hybrid PVDF-HFP/Nanoparticle Gel Electrolyte for Dye-Sensitized Solar Cell Applications,” Nanotechnology, 19, 455201 (2008).
[68] C. L. Chen, H. Teng, and Y. L. Lee, “Preparation of Highly Efficient Gel-State Dye-Sensitized Solar Cells Using Polymer Gel Electrolytes Based on Poly(acrylonitrile-co-vinyl acetate),” J. Mater. Chem., 21, 628-632 (2011).
[69] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, “Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell,” Langmuir, 19, 3572-3574 (2003).
[70] B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics,” Chem. Mater., 14, 5023-5029 (2002).
[71] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies,” Nature, 395, 583-585 (1998).
[72] R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 7578-7580 (2002).
[73] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Grätzel, “Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture,” Nano Lett., 7(11), 3372-3376 (2007).
[74] S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes, and M. Grätzel, “Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor,” J. Phys. Chem. Lett., 1, 1524-1527 (2010).
[75] N. Cai, S. J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, “An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells,” Nano Lett., 11, 1452-1456 (2011).
[76] X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, “An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material,” Adv. Mater., 22, E150-E155 (2010).
[77] J. K. Koh, J. Kim, B. Kim, J. H. Kim, and E. Kim, “Highly Efficient, Iodine-Free Dye-Sensitized Solar Cells with Solid-State Synthesis of Conducting Polymers,” Adv. Mater., 23, 1641-1646 (2011).
[78] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, and M. Grätzel, “High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells,” Nano Lett., 10, 2609-2612 (2010).
[79] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, “Enhanced Performance of a Dye-Sensitized Solar Cell with an Electrodeposited-Platinum Counter Electrode,” Electrochim. Acta, 53, 2890-2896 (2008).
[80] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a Dye-Sensitized Solar Cell,” J. Electroanal. Chem., 570, 257-263 (2004).
[81] Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, “A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells,” Electrochem. Commun., 12, 1662-1665 (2010).
[82] N. Papageorgiou, W. F. Maier, and M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media,” J. Electrochem. Soc., 144(3), 876-884 (1997).
[83] A. Kay and M. Grätzel, “Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder,” Sol. Energy Mater. Sol. Cells, 44, 99-117 (1996).
[84] T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes,” J. Electrochem. Soc., 153(12), A2255-A2261 (2006).
[85] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 79, 459-469 (2003).
[86] K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells,” Chem. Lett., 32(1), 28-29 (2003).
[87] W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, “Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes,” ACS Appl. Mater. Interfaces, 1(6), 1145-1149 (2009).
[88] L. Kavan, J. H. Yum, and M. Grätzel, “Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets,” ACS Nano, 5(1), 165-172 (2011).
[89] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, “Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells,” ACS Nano, 4(10), 6203-6211 (2010).
[90] J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, “High-Performance Polypyrrole Nanoparticles Counter Electrode for Dye-Sensitized solar cells,” J. Power Sources, 181, 172-176 (2008).
[91] Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, and L. Fan, “Application of Microporous Polyaniline Counter Electrode for Dye-Sensitized Solar Cells,” Electrochem. Commun., 10, 1299-1302 (2008).
[92] S. Ahmad, J. H. Yum, H. J. Butt, Md. K. Nazeeruddin, and M. Grätzel, “Efficient Platinum-Free Counter Electrodes for Dye-Sensitized Solar Cell Applications,” ChemPhysChem, 11, 2814-2819 (2010).
[93] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I-/I3- Redox Reaction Behavior on Poly(3,4-ethylenedioxythiophene) Counter Electrode in Dye-Sensitized Solar Cells,” J. Photochem. Photobiol. A-Chem., 164, 153-157 (2004).
[94] Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, “Application of Poly(3,4-ethylenedioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells,” Chem. Lett., 31(10), 1060-1061 (2002).
[95] T. C. Wei, C. C. Wan, and Y. Y. Wang, “Poly(N-vinyl-2-pyrrolidone)- Capped Platinum Nanoclusters on Indium-Tin Oxide Glass as Counterelectrode for Dye-Sensitized Solar Cells,” Appl. Phys. Lett., 88, 103122 (2006).
[96] W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, “Transparent Graphene/PEDOT-PSS Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells,” Electrochem. Commun., 10, 1555-1558 (2008).
[97] B. Fan, X. Mei, K. Sun, and J. Ouyang, “Conducting Polymer/Carbon Nanotube Composite as Counter Electrode of Dye-Sensitized Solar Cells,” Appl. Phys. Lett., 93, 143103 (2008).
[98] K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, “A High Performance Dye-Sensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode,” J. Mater. Chem., 20, 4067-4073 (2010).
[99] Y. L. Lee and Y. S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe,” Adv. Funct. Mater., 19, 604-609 (2009).
[100] Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, “Application of Carbon Counterelectrode on CdS Quantum Dot-Sensitized Solar Cells (QDSSCs),” Electrochem. Commun., 12, 327-330 (2010).
[101] S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, and J. Ko, “Hierarchical Nanostructured Spherical Carbon with Hollow Core/Mesoporous Shell as a Highly Efficient Counter Electrode in CdSe Quantum-Dot-Sensitized Solar Cells,” Appl. Phys. Lett., 96, 063501 (2010).
[102] S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, and J. Ko, “Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and QuantumDot Solar Cells,” Langmuir, 26(16), 13644-13649 (2010).
[103] G. Hodes and J. Manassen, “Electrocatalytic Electrodes for the Polysulfide Redox System,” J. Electrochem. Soc., 127(3), 544-549 (1980).
[104] Z. Yang, C. Y. Chen, C. W. Liu, and H. T. Chang, “Electrocatalytic Sulfur Electrodes for CdS/CdSe Quantum Dot-Sensitized Solar Cells,” Chem. Commun., 46, 5485-5487 (2010).
[105] Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang, “Quantum Dot-Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency,” Adv. Energy Mater., 1, 259-264 (2011).
[106] Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe Quantum Dot-Sensitized Solar Cell Employing TiO2 Nanotube Working-Electrode and Cu2S CounterElectrode,” Appl. Phys. Lett., 97, 123107 (2010).
[107] M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Screen-Printed Cu2S-Based Counter Electrode for Quantum-Dot-Sensitized Solar Cell,” Chem. Lett., 39, 1168-1170 (2010).
[108] Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, and A. Zaban, “PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells,” J. Phys. Chem. C, 115, 6162-6166 (2011).
[109] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell,” Nature, 261, 402-403 (1976).
[110] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%,” Jpn. J. Appl. Phys., 45(25), L638-L640 (2006).
[111] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, and M. Grätzel, “Acid-Base Equilibria of (2,2’-Bipyridyl4,4’-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania,” Inorg. Chem., 38, 6298-6305 (1999).
[112] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano, 3(10), 3103-3109 (2009).
[113] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, and P. Wang, “Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine,” J. Phys. Chem. C, 113, 6290-6297 (2009).
[114] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” ACS Nano, 4(10), 6032-6038 (2010).
[115] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, and C. Kim, “A Highly Efficient Organic Sensitizer for Dye-Sensitized Solar Cells,” Chem. Commun., 46, 4887-4889 (2007).
[116] H. Im, S. Kim, C. Park, S. H. Jang, C. J. Kim, K. Kim, N. G. Park and C. Kim, “High Performance Organic Photosensitizers for Dye-Sensitized Solar Cells,” Chem. Commun., 46, 1335-1337 (2010).
[117] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, “High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer,” Chem. Commun., 16, 2198-2200 (2009).
[118] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, “Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks,” Chem. Mater., 22, 1915-1925 (2010).
[119] T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, “Properties of Several Types of Novel Counter Electrodes for Dye-Sensitized Solar Cells,” J. Electroanal. Chem., 574, 77-83 (2004).
[120] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsua, and E. Abe, “Flexible Counter Electrodes Based on Metal Sheet and Polymer Film for Dye-Sensitized Solar Cells,” Thin Solid Films, 472, 242-245 (2005).
[121] Q. W. Jiang, G. R. Li, and X. P. Gao, “Highly Ordered TiN Nanotube Arrays as Counter Electrodes for Dye-Sensitized Solar Cells,” Chem. Commun., 44, 6720-6722 (2009).
[122] P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte,” Chem. Commun., 24, 2972-2973 (2002).
[123] P. Wang, S. M. Zakeeruddin, J. E. Moser, Md. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A Stable Quasi-Solid-State Dye-Sensitized Solar Cell With an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte,” Nat. Mater., 2, 402-407 (2003).
[124] R. Komiya, L. Han, R. Yamanaka, A. Islam, and T. Mitate, “Highly Efficient Quasi-Solid State Dye-Sensitized Solar Cell with Ion Conducting Polymer Electrolyte,” J. Photochem. Photobiol. A-Chem., 164, 123-127 (2004).
[125] H. J. Snaith, “Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells,” Adv. Funct. Mater., 20, 13-19 (2010).
[126] R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors,” J. Phys. Chem., 98, 3183 (1994).
[127] A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots,” Langmuir, 14, 3153 (1998).
[128] S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides,” J. Mater. Chem., 12, 1459-1464 (2002).
[129] S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen, and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition,” Appl. Phys. Lett., 90, 143517 (2007).
[130] C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells,” Appl. Phys. Lett., 91, 053503 (2007).
[131] L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, “High Efficiency of CdSe Quantum-Dot-Sensitized TiO2 Inverse Opal Solar Cells,” Appl. Phys. Lett., 91, 023116 (2007).
[132] Y. L. Lee, B. M. Huang, and H. T. Chien, “Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications,” Chem. Mater., 20, 6903-6905 (2008).
[133] S. Q. Fan, D. Kim, J. J. Kim, D. W. Jung, S. O. Kang, and J. Ko, “Highly Efficient CdSe Quantum-Dot-Sensitized TiO2 Photoelectrodes for Solar Cell Applications,” Electrochem. Commun., 11, 1337-1339 (2009).
[134] L. W. Chong, H. T. Chien, and Y. L. Lee, “Assembly of CdSe onto Mesoporous TiO2 Films Induced by a Self-Assembled Monolayer for Quantum Dot-Sensitized Solar Cell Applications,” J. Power Sources, 195, 5109-5113 (2010).
[135] Y. H. Lee, S. H. Im, J. H. Rhee, J. H. Lee, and S. I. Seok, “Performance Enhancement through Post-Treatments of CdS-Sensitized Solar Cells Fabricated by Spray Pyrolysis Deposition,” ACS Appl. Mater. Interfaces, 6, 1648-1652 (2010).
[136] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, and G. J. Wang, “Ag2S Quantum Dot-Sensitized Solar Cells,” Electrochem. Commun., 12, 1158-1160 (2010).
[137] Z. Yang and H. T. Chang, “CdHgTe and CdTe Quantum Dot Solar Cells Displaying an Energy Conversion Efficiency Exceeding 2%,” Sol. Energy Mater. Sol. Cells, 94, 2046-2051 (2010).
[138] V. G. Pedro, X. Xu, I. M. Seró, and J. Bisquert, “Modeling High-Efficiency Quantum Dot Sensitized Solar Cells,” ACS Nano, 4(10), 5783-5790 (2010).
[139] Z. Yu, Q. Zhang, D. Qin, Y. Luo, D. Li, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient Quasi-Solid-State Quantum-Dot-Sensitized Solar Cell Based on Hydrogel Electrolytes,” Electrochem. Commun., 12, 1776-1779 (2010).
[140] H. Chen, W. Li, H. Liu, and L. Zhu, “Performance Enhancement of CdS-Sensitized TiO2 Mesoporous Electrode with Two Different Sizes of CdS Nanoparticles,” Microporous Mesoporous Mat., 138, 235-238 (2011).
[141] Y. H. Lee, S. H. Im, J. H. Lee, and S. I. Seok, “Porous CdS-Sensitized Electrochemical Solar Cells,” Electrochim. Acta, 56, 2087-2091 (2011).
[142] B. Fang, M. Kim, S. Q. Fan, J. H. Kim, D. P. Wilkinson, J. Ko, and J. S. Yu, “Facile Synthesis of Open Mesoporous Carbon Nanofibers With Tailored Nanostructure as a Highly Efficient Counter Electrode in CdSe Quantum-Dot-Sensitized Solar Cells,” J. Mater. Chem., 21, 8742-8748 (2011).
[143] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient CdS/CdSe-Sensitized Solar Cells Controlled by the Structural Properties of Compact Porous TiO2 Photoelectrodes,” Phys. Chem. Chem. Phys., 13, 4659-4667 (2011).
[144] A. Tubtimtae, M. W. Lee, and G. J. Wang, “Ag2Se Quantum-Dot Sensitized Solar Cells for Full Solar Spectrum Light Harvesting,” J. Power Sources, 196, 6603-6608 (2011).
[145] A. Braga, S. Giménez, I. Concina, A. Vomiero, and I. Mora-Seró, “Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes,” J. Phys. Chem. Lett., 2, 454-460 (2011).
[146] Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem., 95, 525-532 (1991).
[147] W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers,” Angew. Chem. Int. Ed., 41, 2368 (2002).
[148] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater., 15, 2854 (2003).
[149] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, 307, 538 (2005).
[150] A. J. Nozik, “Multiple Exciton Generation in Semiconductor Quantum Dots,” Chem. Phys. Lett., 457, 3-11 (2008).
[151] R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,” Phys. Rev. Lett., 92(18), 186601 (2004).
[152] A. J. Nozik, “Quantum Dot Solar Cells,” Physica E, 14, 115-120 (2002).
[153] A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion,” Inorg. Chem., 44, 6893-6899 (2005).
[154] R. T. Ross and A. J. Nozik, “Efficiency of Hot-Carrier Solar Energy Converters,” J. Appl. Phys., 53(5), 3813-3818 (1982).
[155] M. C. Hanna and A. J. Nozik, “Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers,” J. Appl. Phys., 100, 074510 (2006).
[156] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells,” J. Photochem. Photobiol. A-Chem., 181, 306313 (2006).
[157] H. J. Lee, J. Bang, J. Park, S. Kim, and S. M. Park, “Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes,” Chem. Mater., 22, 5636-5643 (2010).
[158] C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions,” Adv. Mater., 17, 1512-1515 (2005).
[159] N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment,” J. Phys. Chem. C, 113, 4208-4214 (2009).
[160] S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the Performance of Colloidal Quantum-Dot-Sensitized solar cells,” Nanotechnology, 20, 295204 (2009).
[161] I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villarreal, R. Gómez, and J. Bisquert, “Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: the Role of the Linker Molecule and of the Counter Electrode,” Nanotechnology, 19, 424007 (2008).
[162] E. Martínez-Ferrero, I. Mora-Seró, J. Albero, S. Giménez, J. Bisquert, and E. Palomares, “Charge Transfer Kinetics in CdSe Quantum Dot Sensitized Solar Cells,” Phys. Chem. Chem. Phys., 12, 2819-2821 (2010).
[163] G. Hodes, “Comparison of Dye- and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells,” J. Phys. Chem. C, 112, 17778-17787 (2008).
[164] I. Mora-Seró and J. Bisquert, “Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells,” J. Phys. Chem. Lett., 1, 3046-3052 (2010).
[165] I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, and J. Bisquert, “Recombination in Quantum Dot Sensitized Solar Cells,” Accounts Chem. Res., 42(11), 1848-1857 (2009).
[166] Q. Shen,J. Kobayashi, L. J. Diguna, and T. Toyoda, “Effect of ZnS Coating on the Photovoltaic Properties of CdSe Quantum Dot-Sensitized Solar Cells,” J. Appl. Phys., 103, 084304 (2008).
[167] Z. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z. Zhao, K. Sunahara, and A. Furube, “Enhancing the Performance of Quantum Dots Sensitized Solar Cell by SiO2 Surface Coating,” Appl. Phys. Lett., 96, 233107 (2010).
[168] M. Shalom, S. Rühle, I. Hod, S. Yahav, and A. Zaban, “Energy Level Alignment in CdS Quantum Dot Sensitized Solar Cells Using Molecular Dipoles,” J. Am. Chem. Soc., 131, 9876-9877 (2009).
[169] E. M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, and J. Bisquert, “Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells,” J. Am. Chem. Soc., 132, 6834-6839 (2010).
[170] I. Mora-Seró, V. Likodimos, S. Giménez, E. Martínez-Ferrero, J. Albero, E. Palomares, A. G. Kontos, P. Falaras, and J. Bisquert, “Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes,” J. Phys. Chem. C, 114, 6755-6761 (2010).
[171] Y. Tachibana, K. Hara, K. Sayama, and H. Arakawa, “Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” Chem. Mater., 14, 25272535 (2002).
[172] R. Banerjee, R. Jayakrishnan, and P. Ayyub, “Effect of the Size-Induced Structural Transformation on the Band Gap in CdS Nanoparticles,” J. Phys.: Condens. Matter, 12, 10647-10654 (2000).
[173] H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and Optical Properties of Wurtzite-Type CdS Nanocrystals,” Inorg. Chem., 45, 5103-5108 (2006).
[174] L. J. Meng and M. P. dos Santos, “Properties of Indium Tin Oxide (ITO) Films Prepared by R.F. Reactive Magnetron Sputtering at Different Pressures,” Thin Solid Films, 303, 151-155 (1997).
[175] J. Zhang,G. Yang, Q. Sun, J. Zheng, P. Wang, Y. Zhu, and X. Zhao, “The Improved Performance of Dye Sensitized Solar Cells by Bifunctional Aminosilane Modified Dye Sensitized Photoanode,” J. Renew. Sust. Energ., 2, 013104 (2010).
[176] J. Krüger, U. Bach, and M. Grätzel, “Modification of TiO2 Heterojunctions with Benzoic Acid Derivatives in Hybrid Molecular SolidState Devices,” Adv. Mater., 12(6), 447-451 (2000).
[177] Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, “Characteristics of High Efficiency Dye-Sensitized Solar Cells,” J. Phys. Chem. B, 110, 25210-25221 (2006).
[178] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel, “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids,” J. Phys. Chem. C, 111, 6550-6560 (2007).
[179] J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, S. Giménez, “Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements,” J. Phys. Chem. C, 113, 17278-17290 (2009).