簡易檢索 / 詳目顯示

研究生: 韓岳融
Han, Yueh-Jung
論文名稱: 流道內梯型擋板對質子交換膜燃料電池性能增益之研究
Study on effect of trapezoid baffles in flow channel on performance of PEM fuel cells
指導教授: 吳鴻文
Wu, Horng-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 126
中文關鍵詞: 質子交換膜燃料電池梯形擋板變異數分析田口實驗方法基因演算法阻抗分析
外文關鍵詞: PEM fuel cell, trapezoidal baffle, ANOVA, Taguchi method, Genetic algorithm, Impedance analysis
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係以數值計算及實驗研究質子交換膜燃料電池的性能增益。數值計算則分成兩部分,第一部分係以文獻單通道研究之梯型擋板最佳形狀為基礎,建立三維單通道質子交換膜燃料電池的數值模型,透過加裝不同梯型擋板數量1、3、5、7及9個來探討電池的性能,以決定最好性能的梯型擋板數量。
    第二部分係以第一部分的最佳梯型擋板數量,安裝於蛇型全流道為基礎,在四種不同流道位置組合下數值模擬探討電池的性能。得到電池在陰陽極流道於Case III的安排方式下,有最佳的淨功率,其輸出淨功率高於無加裝梯型擋板的流道設計約 8.03 %。
      本文實驗透過田口方法L27直交表針對已加裝梯型擋板 (Case III)之蛇形全流道進行實驗,運用L27直交表的五種操作參數 (因子A:電池操作溫度、因子B:陽極入口相對濕度、因子C:陰極入口相對濕度、因子D:陽極化學計量比、因子E:陰極化學計量比),以最少的實驗次數進行相關因子對單電池的性能影響實驗,並利用L27求出各因子的平均S/N,採用遺傳演算法建立連續型替代模型,求出最優組合。最優組合為A: 335 K, B: 75.35%, C: 66.68%, D: 1, E: 1。最優組合的平均品質損失百分較最大功率組合相比提升49.77%。分析最佳參數水準組合及無加裝梯型擋板的流道設計的交流阻抗,以驗證極化性能分析的趨勢。

    This study discusses the best performance of proton exchange membrane fuel cells by numerical calculation and experiment. The numerical calculation consists of two parts. The first part is based on the best shape of the trapezoidal baffle in the single channel study in the literature, and establishes three-dimensional single channel proton exchange membrane fuel cell numerical modeling by adding different trapezoidal baffle numbers 1, 3, 5, 7, and 9 to discuss the performance of the battery to determine the number of trapezoidal baffle with the best performance.
    The second part is based on the optimal number of trapezoidal baffle of the first part, installed in the full serpentine channel, and numerically explores the performance of the fuel cell under the combination of four different flow channel positions. Obtained that the fuel cell has the best net power under the arrangement of trapezoidal baffles in Case III, and its output net power is higher than the design of the flow channel without additional trapezoidal baffles.
    In this study, the five operating parameters of Taguchi method L27 matrix (factor A: the cell temperature, factor B: anode inlet relative humidity, factor C: cathode inlet relative humidity, factor D: anode stoichiometric ratio, and factor E: cathode stoichiometric ratio) were used to conduct experiments on the full serpentine channel with the trapezoidal baffle (Case III) installed. Employing the mean S/N obtained by L27 matrix established a Continuous-type Surrogate Model with genetic algorithm to find the optimum combination, which is A=335 K, B=75.35%, C=66.68%, D=1, E=1. This combination is confirmed to be the best combination by improving the average PRQL by 49.77% compared with the combination of percentage reduction of quality loss (PRQL) by 49.77% compared with the factor combination of maximum electrical power. After analyzing the optimal parameter level combination and the impedance analysis of the flow channel design without additional trapezoidal baffle, the trend of polarization performance analysis is verified.

    摘要 I Abstract III 誌謝 V Table of Content VI List of Table X List of Figure XI Nomenclature XIV Chapter 1. Introduction 1 1.1 Overview 1 1.2 Characteristics of fuel cells 2 1.3 Literature review 4 1.4 Background and motivation 10 Chapter 2. Numerical Description of PEM Fuel Cell 12 2.1 Geometric model 12 2.1.1 Single channel geometry of fuel cell 12 2.1.2 Installation locations of baffle row in a serpentine channel 13 2.2 Assumptions 13 2.3 Governing equations 14 2.3.1 Continuity equation 14 2.3.2 Momentum conservation equation 14 2.3.3 Energy conservation equation 15 2.3.4 Species transport equation 15 2.3.5 Charge equation 16 2.3.6 Water transport equation 17 2.4 Boundary conditions 19 2.5 Numerical method 20 Chapter 3. Experimental Instruments of PEM Fuel Cell 21 3.1 PEM fuel cell experimental system 21 3.2 Electronic load instrument 21 3.3 Heating system of PEM fuel cell 21 3.4 The EIS measurement instrument 22 3.5 Single serpentine fuel cell 22 3.6 Heating-type humidification system 23 3.7 Measurement uncertainty 23 Chapter 4. Experimental Methods of PEM Fuel Cell 26 4.1 Experiment procedure 26 4.1.1 Analysis information 26 4.1.2 Confirmatory test 28 4.1.3 PEM fuel cell component assembly 29 4.2 Polarization curve 30 4.2.1 Activation loss 31 4.2.2 Ohmic loss 32 4.2.3 Mass transfer loss 32 4.3 Taguchi method 33 4.3.1 Taguchi orthogonal array 34 4.3.2 S/N and quality characteristics 36 4.4 Principal component analysis (PCA) 38 4.5 Percentage reduction of quality loss (PRQL) 40 4.6 Genetic Algorithm 43 4.6.1 Fitness function 44 4.6.2 Calculation method 45 4.7 Fuel cell activation process 48 4.8 Heating with humidification of inlet relative humidity 49 4.9 Electrochemical impedance spectroscopy (EIS) 50 4.10 EIS analysis of PEM fuel cell 50 Chapter 5. Results and Discussion 52 5.1 Model validation for original serpentine flow channel 52 5.2 Numerical Simulation Analysis 52 5.2.1 Effects of baffle numbers on fuel cell performance and pressure drop for single channel 52 5.2.2 Effects of baffles position on entire performance and pressure drop loss for serpentine channel 54 5.2.3 Distribution of reactant gases, temperature and water saturation inside the flow field 56 5.3 Experimental Analysis of Taguchi Method 58 5.3.1 An analysis of variance (ANOVA) analysis for the optimization parameter combination of the S/N 59 5.3.2 The Predicted value of optimal parameter for S/N under confidence interval 60 5.3.3 Comparison of confirmation experimental and forecast results 61 5.3.4 The optimal factor combinations of multi-objective 61 5.4 The PCA (optimal condition obtained with principal component analysis) method 61 5.5 Comparison of the optimum results between single and multiple objective for design model of case III by PRQL 63 5.6 Optimal conditions with different single objectives and multi-objective by experiment 65 5.7 Impendence analysis of PEM fuel cell 66 Chapter 6. Conclusions and Future Work 68 6.1 Conclusions 68 6.2 Future work 70 References 71

    [1] L.J. Fang, “The book of 2010 energy technique industry”, Bureau of economic, 2010.
    [2] F.C. Lee, “New energy”, Hsin Wen Ging published corporation, 2009.
    [3] J. Larminie, A. Dicks, Fuel cell systems explained, John Wiley Inc, New York, pp.1-418, 2000.
    [4] J.J. Huang, “Fuel cell”, Chun Hua books, 2007.
    [5] A.R. Maher, A.B. Sadiq, “PEM fuel cells: fundamentals, modeling, and applications”, Washington: Create Space Independent Publishing Platform, 2013.
    [6] M.Z. Chowdhury, O. Genc, S. Toros, “Numerical optimization of channel to land width ratio for PEM fuel cell”, International Journal of Hydrogen Energy, Vol. 43, pp. 10798-10809, 2018.
    [7] H. Heidary, M.J. Kermani, B. Dabirc, “Influences of bipolar plate channel blockages on PEM fuel cell performances”, Energy Conversion and Management, Vol. 124, pp. 51-60, 2016.
    [8] Y. Kerkoub, A. Benzaoui, F. Haddad, Y.K. Ziari, “Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell”, Energy Conversion and Management, Vol. 174, pp. 260-275, 2018.
    [9] H. Heidary, M.J. Kermani, S.G. Advani, A.K. Prasad, “Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells”, International Journal of Hydrogen Energy, Vol. 41, pp. 6885-6893, 2016.
    [10] J. Kim, G. Luo, C.Y. Wang, “Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells”, Journal of Power Sources, Vol. 365, pp. 419-429. 2017.
    [11] J.W. Park, K. Jiao, X. Li, “Numerical investigations on liquid water removal from the porous gas diffusion layer by reactant flow”, Applied Energy, Vol. 87, pp. 2180-2186, 2010.
    [12] H. Heidary, M.J. Kermani, A.K. Prasad, S.G. Advani, B. Dabir, “Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells”, International Journal of Hydrogen Energy, Vol. 42, pp. 2265-2277, 2017.
    [13] M. Bilgili, G. Tsotridis, M. Bosomoiu, “Gas flow field with obstacles for PEM fuel cells at different operating conditions”, International Journal of Hydrogen Energy, Vol. 40, pp. 2303-2011, 2015.
    [14] H.W. Ku, H.W. Wu, “Influences of operational factors on proton exchange membrane fuel cell performance with modified interdigitated flow field design”, Journal of Power Sources, Vol. 232, pp. 199-208, 2013.
    [15] I. khazaee, H. Sabadbafan, “Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell”, Energy, Vol. 101, pp. 252-265, 2016.
    [16] Y. Li, Z. Zhou, X. Liu, W.T. Wu, “Modeling of PEM fuel cell with thin MEA under low humidity operating condition”, Applied Energy, Vol. 242, pp.1513-1527, 2019.
    [17] P.K. Das, X. Li, Z. Xie, Z.S. Liu, “Effects of catalyst layer structure and wettability on liquid water transport in polymer electrolyte membrane fuel cell”, International Journal of Energy Research, Vol. 35, pp. 1325-1339, 2011.
    [18] D. Cha, J.H. Ahn, H.S. Kim, Y. Kim, “Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density”, Energy, Vol. 93, pp. 1338-1344, 2015.
    [19] H.W. Wu, H.W. Ku, “The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method”, Applied Energy, Vol. 88, pp. 4879-4890, 2011.
    [20] W. Yuan, Y. Tang, M. Pan, Z. Li, B. Tang, “Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance”, Renewable Energy, Vol. 35, pp. 656-666, 2010.
    [21] P. Quan, M.C. Lai, “Numerical study of water management in the air flow channel of a PEM fuel cell cathode”, Journal of Power Sources, Vol. 164, pp. 222-237, 2007.
    [22] M. Amirinejad, S. Rowshanzamir, M.H. Eikani, “Effects of operating parameters on performance of a proton exchange membrane fuel cell”, Journal of Power Sources, Vol. 161, pp. 872-875, 2006.
    [23] Q.F. Jian, G.Q. Ma, X.L. Qiu, “Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field”, Renewable Energy, Vol. 62, pp.129-136, 2014.
    [24] S.W. Perng, H.W. Wu, “A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC”, Applied Energy, Vol. 143, pp. 81-95, 2015.
    [25] D. Bezmalinović, S. Strahl, V. Roda, A. Husar, “Water transport study in a high temperature proton exchange membrane fuel cell stack”, International Journal of Hydrogen Energy, Vol. 39, pp. 10627-10640, 2014.
    [26] K.H. Wong, K.H. Loo, Y.M. Lai, S.C. Tan, C.K. Tse, “A theoretical study of inlet relative humidity control in PEM fuel cell”, International Journal of Hydrogen Energy, Vol. 36, pp. 11871-11885, 2011.
    [27] A. Iranzo, P. Boillat, J. Biesdorf, A. Salva, “Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry”, Energy, Vol. 82, pp. 914-921, 2015.
    [28] W.L. Yu, S.J. Wu, S.W. Shiah, “Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks”, International Journal of Hydrogen Energy, Vol. 35, pp. 11138-11147, 2010.
    [29] H.W. Wu, G.J. Shih, Y.B. Chen, “Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement”, Applied Energy, Vol. 220, pp. 47-58, 2018.
    [30] F. Tiss, R. Chouikh, A. Guizani, “A numerical investigation of reactant transport in a PEM fuel cell with partially blocked gas channels”, Energy Conversion and Management, Vol. 80, pp. 32-38, 2014.
    [31] V. Thitakamol, A. Therdthianwong, S. Therdthianwong, “Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells”, International Journal of Hydrogen Energy, Vol. 36, pp. 3614-3622, 2011.
    [32] B. Dokkar, N.E. Settou, O. Imine, N. Saifi, B. Negrou, Z. Nemouchi, “Simulation of species transport and water management in PEM fuel cells”, International Journal of Hydrogen Energy, Vol. 36, pp. 4220-4227, 2011.
    [33] E. Afshari, M.M. Dehkordi, H. Rajabian, “An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor”, Energy, Vol. 118, pp. 705-715, 2017.
    [34] X. Wang, Y. Qin, S. Wu, X. Shangguan, J. Zhang, Y. Yin, “Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance”, Journal of Power Sources, Vol. 457, 228034, 2020.
    [35] P. Costamagna, K. Honegger, “Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”, Journal of The Electrochemical Society, Vol. 145, pp. 3995-4007, 1998.
    [36] H. Ju, C.Y. Wang, “Experimental validation of a PEM fuel cell model by current distribution data”, Journal of The Electrochemical Society, Vol. 151, pp. 1954-1960, 2004.
    [37] F.J. Wang, “Computational fluid dynamics analysis”, Tsinghua University Press, Beijing, 2004.
    [38] R.K. Roy, “A primer on the Taguchi method”, Society of Manufacturing Engineers, Taipei, 1990.
    [39] C.Y. Chen, “Effect of temperature and humidity on characteristics of phosphoric acid doped polybenzimidazole fuel cells”, National Cheng Kung University, 2010.
    [40] G. J. Park, “Analytic methods for design practice”, Springer Science & Business Media, Berlin, 2007.
    [41] W.Y. Fowlkes, C.M. Creveling, “Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development”, Addison-Wesley, United States of America, 1995.
    [42] K. Pearson, “On lines and planes of closest fit to systems of points in spaces”, Philos. Mag, ser. 62, pp.559–572, 1901.
    [43] H. Hotelling, “Analysis of a complex of statistical variables into principal components”, Journal of Educational Psychology, vol. 24, no.6, pp.417–441, 1933.
    [44] M. S. Phadke, “Quality engineering using robust design”, Prentice-Hall, Englewood Cliffs, NJ, 1995.
    [45] G. Taguchi, Y. Yokoyama, Y. Wu, “Taguchi methods: Design of experiments”, ASI Press, Chicago, 1993.
    [46] P. J. Ross, “Taguchi techniques for quality engineering”, McGraw-Hill, New York, 1988.
    [47] G. Taguchi, “Quality engineering in production systems”, McGraw-Hill, New York, 1989.
    [48] F.C. Wu, “Optimisation of Multiple Quality Characteristics Based on Percentage Reduction of Taguchi’s Quality Loss”, International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 749-753, 2002.
    [49] J.K. Lin, “Numerical Simulation and Robust Parameter Design of PEM Fuel Cell”, Master thesis, National Defense University, 2012.
    [50] J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nded, John Wiley&Sons Ltd, 2013.
    [51] Y.W. Su, “Performance Test and Electrochemical Impedance Spectroscopy/Cyclic Voltammetry for a μPEM Fuel Cell”, Master thesis, National Sun Yat-sen University, 2012
    [52] M. Venkatraman, S. Shimpalee, J.W.V. Zee, S.I. Moon, C.W. Extrand, “Estimates of pressure gradients in PEMFC gas channels due to blockage by static liquid drops”, International Journal of Hydrogen Energy, Vol. 34, pp. 5522-5528, 2009

    無法下載圖示 校內:2025-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE