| 研究生: |
劉俊男 Liou, Jiun-nan |
|---|---|
| 論文名稱: |
數值模擬與紅外線熱影像於混凝土版後方孔洞檢測之研究 Detecting the Voids behind the Concrete Covers by Numerical Simulation and Infrared Thermography |
| 指導教授: |
李德河
Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 紅外線熱影像 、熱傳遞 |
| 外文關鍵詞: | Heat Transform, IR- thermophy |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非破壞性檢測是指不破壞受測物的情況下,利用儀器檢驗與量測物體缺陷或性質的技術,如紅外線熱影像乃藉擷取物體表面輻射溫度判斷受檢物狀況的非破壞檢測法。當受測物內部有孔洞時,由於外在熱量的改變使物體表面呈現不同的輻射溫度變化情形,而得以瞭解孔洞存在情形。然而以此法檢測內部孔洞時雖然快速方便,卻不容易找出孔洞實際尺寸及深度。若能配合數值模擬來得到更多定性、定量的資訊,將可對未知的檢測環境做預測或對檢測結果作更明確的判釋。
本文即嘗試以模型試驗結合數值模擬結果來進行紅外線熱影像對混凝土版下方孔洞檢測之研究,使用混凝土版與砂箱建立試驗模型,內置發泡式聚苯乙烯為模擬孔洞,進行不同加熱時間與深度試驗,並同時進行數值模型的建立與修正使其與試驗模型結果達到一致性。再將完成之數值模型,模擬不同材質、尺寸的孔洞以及施以不同的加熱時間、深度及加熱源之情況下,孔洞存在所造成混凝土版表面溫度的變化,並嘗試建立檢測流程來判斷孔洞尺寸。
由模擬結果可發現下列幾點:
1.孔洞溫度與周圍砂之熱傳性質息息相關,孔洞熱傳係數較砂大時會造成孔洞前方的混凝土版表面溫度較高,反之則較低。
2.連續加熱三小時,保麗龍孔洞之|△T|上升至80分鐘後開始降低,水泥砂漿孔洞|△T|在100~200分鐘後開始降低。
3.孔洞溫差絕對值與孔洞截面積成正比,但與埋設深度成反比。
4.砂箱尺寸放大,只要孔洞尺寸不改變,溫差值不受其尺寸效應影響
Non-Destructive Testing (NDT) is a testing method for detecting and measuring the qualities or defects of objects, such as thermography, ground penetrating radar, etc. Thermography, one of the NDT methods, evaluates the subject according to the surface temperature of the subject. As the object has a void inside, the surface temperature of the void will differ from the solid area at the same specimen. The void can be distinguished by the surface temperature difference. Although thermogrophy is convenient for detecting the inner void of the material, it is not easy to detect the exact size and depth of the void. The information of the surface temperature variation associated with the size and depth of the void and the environment conditions, such as the heat source and the environmental temperature, is deficient in the evaluation process. By using the numerical simulations to obtain the information of exact qualities and quantities that can make the results of detection clearly.
Therefore, this thesis tried to find the way that can detect the subsurface void of the concrete plate exactly through the lab experiments and the numerical simulations. The sand box full of sands with a surface covered by the concrete plate was used in the lab experiment. The void behind the concrete cover was simulated by polystyrene cube. The heating time and the depth of the simulating void were varied in the experiments, meanwhile, the numerical model was created and revised to fit the results of the experiments in different conditions. Then, the revised numerical model was applied to simulate the surface temperature of the concrete plate under different materials, sizes and depths of the void, and different heating time and heating sources. Finally, this thesis tried to create the process of evaluating the size of the void based on the results of the numerical simulations.
After a series lab experiments and numerical simulations, some conclusions could be made as follows:
1.The temperature of the void has the high correlation with the thermal property of the sands around the void. When the thermal conductivity of the void is higher than the sands, the surface temperature of the concrete plate over the void would be high. On the other hand, the surface temperature of the concrete plate over the void would be low as the thermal conductivity of the void is lower than the sands.
2.As the sandbox was heated for three hours, the |△T| of the voids simulated by polystyrene will increase until eighty minutes, and then decrease. But, the |△T| of the voids built by cement mortar will decrease after one hundred to two hundred minutes in the same heating time.
3.The absolute temperature difference was directly proportional to the surface of the void, but inversely proportional to the depth of the void.
4.If the size of the void is fixed, the temperature difference would not be influenced by the variation of the size of the sand box
參考文獻
1. 山田雅士,建築絕熱,台北斯坦出版有限公司,1992。
2. 方榆翔,以有限元素法解熱傳及彈性力學問題,碩士論文國立成功大學機械工程研究所,2005。
3. 李德河,鹽水溪排水安全評估分析及研擬改善計畫,經濟部水利署第六河川局,2005。
4. 李人豪,紅外線熱影像與數值模擬於孔洞檢測之研究,碩士論文,國立成功大學土木工程研究所,2006。
5. 李洲亘,紅外線熱影像法參數設定與表層混凝土火害受損區域檢測,碩士論文,朝陽科技大學營建工程系,2006。
6. 李佳恩,潛盾隧道冰凍工法熱傳導之有限元素分析,碩士論文,國立中央大學土木工程研究所,2006。
7. 巫春富,ABAQUS模擬Ti-6A1V與17-4PH不銹鋼硬焊工件之殘餘熱應力研究,碩士論文,國立東華大學材料科學與工程研究所,2003。
8. 吳秉晃,集集地震後阿里山地區公路邊坡之崩壞行為與熱紅外線影像特性研究,碩士論文,國立成功大學土木工程研究所,2002。
9. 依日光,紅外線遙感測熱法,復漢出版社,2001。
10. 高裕倫,應用三維有限元素法於鋼緣熱軋缺陷生成之分析,碩士論文,國立中正大學機械工程研究所,2003。
11. 洪瑞勳,紅外線熱影像與加熱爐熱分布檢測之研究,碩士論文,國立屏東科技大學機械工程學系,2004
12. 陳俊德,有限元素法應用於變壓器之電場及熱傳分析,碩士論文,逢 甲大學電機工程學系,2004
13. 陳俊菁,應用紅外線熱影像術檢測磁磚黏貼完整性,碩士論文,朝陽科技大學營建工程系,2004。
14. 陳乃鳴,岩盤內受熱開挖孔間之熱傳導特性研究,碩士論文,高雄第一科技大學營建工程系,2004。
15. 陳昭旭,“大深度地下空間開挖周圍岩體之熱-力學行為研究”,地下開發與防災之創新科技研究成果發表研討會論文集,P.43-P.61,2007。
16. 黃楷淳,透地雷達與熱影像技術於地表下物體之應用研究,碩士論文,國立成功大學土木工程研究所,2005。
17. 愛發股份有限公司,ABAQUS實務入門引導,全華出版社,2005。
18. 廖銘遠,有限元素法在二維流道之複合熱傳分析,碩士論文,國立台灣科技大學機械工程系,2001。
19. 劉大魁,GPR與熱紅外線影像技術於大地工程之應用研究,碩士論文,國立成功大學土木工程研究所,2002。
20. 潘國樑,遙測學大綱,科技圖書股份有限公司,2006。
21. 鄭子揚,建築物之紅外線熱影像法檢測,碩士論文,朝陽科技大學營建工程系,2005。
22. Incropera DeWitt,熱傳遞第五版,高立出版社,2006
23. NEC, Thermo Tracer TH7102 MX/WX/MV/WV 中文操作手冊,NEC,2002
24. ABAQUS,ABAQUS Theory Manual,ABAQUS,2005
25. Baehr,H.D. and Stephan,K. Heat and Mass Transfer, Springer,P.105~P.187 ,2006.
26. Balaras,C.and Argiriou,A.A.,“Infrared Thermography for Building Diagnostics”, Energy and Buildings, V.34, P.171-P.183, 2002.
27. Brown,T.D.and Javaid,M.Y.,“The Thermal Conductivity of Fresh Concrete”,Materials and Structures, V.3,No.18, P.411~P.416,1970.
28. Chaudhuri, P.,Santra,P.,Sandeep Y.,Arun,P.,ChennaReddy,D.Lachhvani,Govindarajan,J.and Saxena, Y.C.,“ Non-destructive Evaluation of Brazed Joints between Cooling Tube and Heat Sink by IR Thermography”, Infrared Physics & Technology, V.39, P.88-P.95,2006.
29. Farouki,O.T.,Thermal Properties of Soils, Series on Rock and Soil Mechanics,V.11, Trans Tech Publications Inc.,1986.
30. Holman ,J.P. ,Heat Transfer ,seven edition ,McGraw-Hill,P.79~P.89,1992.
31. Maierhofer,Ch.,Brink,A.,Rollig,M.and Wiggenhauser,H,
“Transient Thermography for Structural Investigation of Concrete and Composites In The Near Surface Region”,Infrared Physics & Technology, V.43, P.271-P.278,2002.
32. Maierhofer,Ch.,Brink,A.,Rollig,M.and Wiggenhauser,H,
“Detection of Shallow Voids In Concrete Structures With Impulse Thermography and Radar”,Infrared Physics & Technology, V.36, P.257-P.263,2003.
33. Maierhofer,Ch.,Brink,A.,Rollig,M,and Wiggenhauser,H,
“Quantitative Numerical Analysis of Transient IR-Experiments on Buildings”,Infrared Physics & Technology, V.46 , P.173-P.180,2004.
34. Rogalskal,A.and Chrzanowski,K.,“Infrared Devices and Techniques”,OPTO-ELECTRONICS REVIEW,P.116~P.136,2002.
35. Sakagami,T.and Kubo,S.,“Development of a New Non-destructive Testing Technique for Quantitative Evaluations of Delamination Defects in Concrete Structures Based on Phase Delay Measurement Using Lock-in Thermography” ,Infrared Physics & Technology, V.43, P.311-P.316,2002.
36. Vavilov,V.and Demin,V.,“Infrared Hermographic Inspection of Operating Smokestacks”, Infrared Physics & Technology, V.43, P.229-P.232,2002 .
37. Wei,C.Y.,Woodbury,H.H,and Wang,S.C.,“Nondestructive Testing and Repair of the Concrete Roof Shell at Seattle Kingdom ”,Infrared Physics & Technology,V.31,P.389-P.400,1991.
38. 山中 稔,2000年1月長崎縣時津町がけ崩れ災害におけゐ熱赤外線リモートセソツソグの適用,社團法人地盤工學會關西支部,P.31~P.34,2000。
39. 長谷川 秀人,熱赤外線映像法によゐ吹付法面老朽化診斷技術,建設省土木研究所材料施工部土質研究所,P.54~P.58,1996。