| 研究生: |
沙珊蒂 Sari, Shanti Kartika |
|---|---|
| 論文名稱: |
聲波振動甲烷-乙烯混合噴流擴散火焰合成奈米碳結構 Synthesis of Carbon Nano-Materials in Methane-Ethylene Jet Diffusion Flames Modulated by Acoustic Excitation |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 聲波振動 、噴流擴散火焰 、混合燃料 、奈米碳結構 |
| 外文關鍵詞: | Acoustic Modulation, Jet Diffusion Flame, Mixed Fuel, Carbon Nano-Materials |
| 相關次數: | 點閱:95 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用聲波振動甲烷-乙烯噴流擴散火焰燃燒合成奈米碳結構,並在催化型的鎳基質狀況下。其研究焦點在於探討聲波振動頻率和甲烷-乙烯混合比對合成奈米碳結構的影響。聲波振動會增強火焰與渦漩之間的交互作用,進而提升燃料和氧化物之混合,對熱環境和奈米碳結構生成會有重要的影響。
文中探討聲波振動頻率(f = 0~90 Hz)以及混合燃料 (甲烷-乙烯混合燃料,乙烯濃度ΩE =0~100%)對火焰結構與奈米材料生成之影響。實驗結果顯示,當乙烯濃度低於40%,f = 10 Hz時,或乙烯濃度為0%(即純甲烷),f = 90 Hz 時,火焰熄滅,其主因是由於此時火焰強度較低,而若週遭空氣因聲波振動引入,會造成火焰熄滅。而無聲波振動(f = 0 Hz)時,在所有乙烯濃度下,火焰皆為單層結構,且幾乎無奈米碳材料生成;當振動頻率在10~90 Hz時,可觀察到雙層的火焰結構。
然而,在z = 10 mm且P = 10和15 W時,當聲波頻率接近其自然擺盪頻率(即為f = 20 Hz,0% ≤ ΩE ≤ 100%),由於燃料與空氣混合的改善,使得有良好的碳合成。合成的產物為蔥狀形奈米碳結構,其形狀如數個葡萄串疊起來。在f = 70 Hz,且40% ≤ ΩE ≤ 100%、P = 10 W和60% ≤ ΩE ≤ 100%、P = 15 W時,高強度的蔥狀形奈米碳結構會生成。更進一步地,在f = 80 Hz,且ΩE = 0%、P = 10 W和0% ≤ ΩE ≤ 5%、P = 15 W時,奈米碳管會生成。在P = 15 W、f = 70 Hz且ΩE = 0%,蔥狀形奈米碳結構也包含鎳基質,而在其他的狀況下,幾乎沒有奈米碳結構生成。
合成奈米碳管的合適溫度範圍比合成蔥狀形奈米碳結構的要來得高 (CNTs : 580~630oC,CNOs :500~600oC)。藉由氣體成分分析可知,在低濃度的CH4和CO(低碳源)時,且溫度也低時,觀察不到奈米碳結構。要合成奈米碳管的範圍,CH4的濃度須高於50%。
Recently, flame synthesis of carbon nano-materials has been widely explored due to its advantages over other production methods that use expensive inputs, such as electricity as the heat source. In this study, methane-ethylene jet diffusion flames modulated by acoustic excitation in an atmospheric environment were used to synthesize carbon nanostructures on a catalytic nickel substrate.
Experiments were conducted to investigate the effects of acoustic excitation frequency (f = 0~90 Hz) and mixed fuel (ethylene concentration ΩE =0~100% in blends of methane-ethylene) on flame structure and nano-material formation. The results show that the flame could not be stabilized on the port for ethylene concentrations (ΩE) of less than 40% at f = 10 Hz, or for ΩE = 0% (i.e., pure methane) at f = 90 Hz, because the flame had a low intensity and was extinguished by the entrained air due to acoustic modulation. Without acoustic excitation f = 0 Hz, the flame comprised a single-layer structure for all values of ΩE and almost no carbon nano-materials were synthesized. But, when frequencies were in the range of 10~90 Hz, a double-layer flame structure was observed.
However, when acoustic excitation neared the natural flickering frequency (i.e., at f = 20 Hz for 0% ≤ ΩE ≤ 100%) at z = 10 mm when P = 10 and 15 W, good carbon synthesis occurred as a result of improved mixing of the fuel with the ambient air. The synthesized products were carbon nano-onions (CNOs) piled like bunches of grapes. High-density CNOs were produced at f = 70 Hz for 40% ≤ ΩE ≤ 100% and 60% ≤ ΩE ≤ 100% at 10 and 15 W, respectively. Further, carbon nano-tubes (CNTs) were synthesized at 80 Hz for ΩE = 0% and 0% ≤ ΩE ≤ 5% at 10 and 15 W, respectively. For P = 15 W at 70 Hz for ΩE = 0%, the CNTs also covered the Ni substrate. Other than these cases, almost no carbon nano-materials were formed.
The suitable temperature ranges for the synthesis of CNTs were slightly higher than for CNOs (580~630oC for CNTs, 500~600oC for CNOs). Gas composition analysis indicated that at low CH4 and CO concentration (low carbon source) and low temperature, no carbon nano-materials could be observed. In the synthesis region of CNTs, the concentration of CH4 was greater than 50%.
1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., “C60: Buckminsterfullerene”, Nature, Vol. 318, p. 162-163, 1985.
2. Iijima, S., “C60: Helical mcrotubules of graphitic carbon”, Nature, Vol. 354, p. 56-58, 1985.
3. Ugarte, D., “Curling and closure of graphitic networks under electron-beam irradiation”, Nature, Vol. 359, p. 707-709, 1992.
4. Walt, A. H., and Ugarte, D., “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature”, Chemical Physics Letters, Vol. 207, p. 480-486, 1993.
5. Chun, L., Guojia, F., Nishuang, L., Xiaoxia, Y and Xingzhong, Z., “Flame-synthesis of carbon nanotubes on silicon substrates and their field emission properties”, Diamond and Related Materials, Vol. 17, p. 1015-1020, 2008.
6. Jennifer, L. L., Jeremy, S. G., Sayangdev, N., Katherine, A. R., Nancy, G. L., Michael, W. E and Ishwar, K. P.,“Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells”, Power Sources, Vol. 196, p. 5829-5834, 2011.
7. Loutfy, R. O., Pugazhendhi, P., Tasaki, K., and Venkatesan, A., “Fullerene-base electrolyte for fuel cells”, US Patent Specification. P. 6949304, 2005.
8. Volkening, F.A., Naidoo, M.N., Candela, G.A., Holtz, R.L., and Provenzano,V. “Characterization of nanocrystalline palladium for solid state gas sensor applications”, Nanostructured Materials, Vol. 5, p. 373-382, 1995.
9. Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Detkov, P., Kuznetsov, V., Pimenov, S., and Pustovoi, V., “Onion-like carbon and diamond nanoparticles for optical limiting”, Vol. 357, p. 336-340, 2002.
10. Maksimenko, S.A., Rodionova, V.N., Slepyan, G.Ya., Karpovich, V.A., Shenderova, O., Walsh, J., Kuznetsov, V.L., Mazov, I.N., Moseenkov, S.I., Okotrub, A.V., and Lambin, Ph., “Attenuation of electromagnetic waves in onion-like carbon composites”, Diamond and Related Materials, Vol. 16, p. 1231-1235, 2007.
11. Shenderova, O., Tyler, T., Cunningham, G., Ray, M., Walsh, J., Casulli, M., Hens, S., McGuire, G., Kuznetsov, V., and Lipac, S., “Nanodiamond and onion-like carbon polymer nanocomposites”, Diamond and Related Materials, Vol. 16, p. 1213-1217, 2007.
12. Tenne, R., Rapoport, L., Lvovsky, M., Feldman, Y., and Leshchinsky, V., “Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices”, No. 6710020, 2004.
13. Lowe, H. M., “Fullerene lubricant”, US Patent Specification, p. 20050221995, 2004.
14. Zujin, S., Yongfu, L., Xihuang, Z., Zhennan, G., Yaogang, Z., Sumio, I., Lixia, Z., Kwok, T. Y., and Shulin, Z., “Mass-production of single-wall carbon nanotubes by arc discharge method”, Carbon, Vol. 37, p.1449-1453, 1999.
15. Zujin, S., Yongfu, L., Fu, H. L., Xihuang Z., Zhennan, G., Zhang, Y., Iijima, S., Hongdong, L., Kwok, T, Y., and Shu-Lin, Z., “Large scale synthesis of single-wall carbon nanotubes by arc-discharge method”, Physics and Chemistry of Solids, Vol. 61, p. 1031-1036, 2000.
16. Roy, D., Chhowalla, M., Wang, H., Sano, N., Alexandrou, I., Clynea, T.W., and Amaratunga, G.A.J, “Characterisation of carbon nano-onions using Raman spectroscopy”, Chemical Physics Letters, Vol. 373, p. 52-56, 2003.
17. Ebbesen, T. W., and Ajayan, P. M., “Large-scale synthesis of carbon nanotubes”, Nature, Vol.358, p. 220-222, 1992.
18. Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., and Amaratunga, G. A. J., “Synthesis of carbon ‘onions’ in water”, Nature, Vol. 414, p. 506-507, 2001.
19. Bao, Q., and Pan, C., “Electric field induced growth of well aligned carbon nanotubes from ethanol flames”, Nanotechnology, Vol. 17, p. 1016-1021, 2006.
20. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E., “Large-scale production of single-walled carbon nanotubes by the electric-arc technique”, Nature, Vol. 388, p. 756-758, 1997.
21. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, Vol. 243, p. 49-54, 1995.
22. Choi, M., Altman, I. S., Kim, Y. J., Pikhitsa, P. V., Lee, S., Park, G. S., Jeong, T., and Yoo, J, B., “Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene”, Advanced Materials, Vol. 16, p. 1721-1725, 2004.
23. Ugarte, D., “Curling and closure of graphitic networks under electron-beam irradiation”, Nature, Vol. 359, p. 707-709, 1992.
24. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M., “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol”, Chemical Physics Letters, Vol. 360, p. 229-234, 2002.
25. Cheung, C. L., Kurtz, A., Park, H., and Charles M. Lieber, “Diameter-Controlled Synthesis of Carbon Nanotubes”, Physical Chemistry B, Vol. 106, p. 2429-2433, 2002.
26. Kenneth, B. K. T., Charanjet, S., Manish, C., and William, I. M., “Chatalytic Synthesis of Carbon Nanotubes and Nanofibers”, Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, p. 1-22, 2003.
27. Kang, J., Li, J., Du, X., Shi, C., Zhao, N., and Nash, P., “Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper”, Materials Science and Engineering, Vol. 475, p. 136-140, 2008.
28. Li Li, Y., Zhang, L. H., Zhong, X. H and Windle, A. H., “Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions”, Nanotechnology, Vol. 18, p. 1-6, 2007.
29. Serp, Ph., Feurer, R., Kalck, Ph., Kihn, Y., Faria, J. L., and Figueiredo, J. L., “A chemical vapour deposition process for the production of carbon nanospheres”, Carbon, Vol. 39, p. 621-626, 2000.
30. Chen, X., Wang, H., and He, J., “Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors”, Nanotechnology, Vol. 19, p. 1-6, 2008.
31. Hai-Long, M., Dang, S. S., Guo-Qiang, J. and Xiang-Yun, G., “The influence of formation conditions on the growth and morphology of carbon tress”, Carbon, Vol. 45, p. 1622-1627, 2007.
32. Perla, S., “Flame Synthesis of Carbon Nanostructures”, Master Thesis, Department of Mechanical Engineering, Lousiana State University, 2005.
33. Katoh, R., Tasaka, Y., Sekreta, E., Yumura, M., Ikazaki, F., Kakudate, Y., and Fujiwara, S., “Sonochemical production of a carbon nanotube”, Ultrasonics Sonochemistry, Vol. 6, p. 185-187, 1999.
34. Bystrzejewski, M., Huczko, A., Lange, H., Baranowski, P., Cota-Sanchez, Soucy, G., Szczytko, J., and Twardowski, A., “Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles”, Nanotechnology, Vol. 18, p. 1-9, 2007.
35. Cabioc'h, T., Thune, E., Rivière, J. P., Camelio, S, Girard, J. C., Guérin, P., Jaouen, M., Henrard, L., and Lambin, Ph., “Structure and properties of carbon onion layers deposited onto various substrates”, Applied Physics, Vol. 91, p. 1560-1567, 2012.
36. Journet, C., and Bernier, P., “Production of carbon nanotubes”, Applied Physics A, Vol. 67, p. 1-9, 1998.
37. Varma, A., Rogachev, A. S., Mukasyan, A. S., and Stephen, H., “Complex behavior of self-propagating reaction waves in heterogeneous media”, Proceedings of the National Academy of Sciences of The United States of America, Vol. 95, p. 11053-11058, 1998.
38. Cudzilo, S., Bystrzejewski, M., Huczko, A., Pakula, M., Biniak, S., Świątkowski, A., and Szala, M., “Physicochemical properties of carbon materials obtained by combustion synthesis of perchlorinated hydrocarbons”, Carbon-Science Technology, Vol. 1, p. 131-138, 2010.
39. Lee, G. W., Jurng, J., and Hwang, J., “Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame”, Carbon, Vol. 42, p. 667-691, 2003.
40. Gore, J. P, and Sane, A., “Flame Synthesis of Carbon Nanotubes”, Nanotechnology and Nanomaterials, Carbon Nanotubes - Synthesis, Characterization, Applications, Chapter 7, InTech, 2001.
41. Pan, C., and Xu, X., “Synthesis of carbon nanotubes from ethanol flame”, Materials Science Letters, Vol. 21, p. 1207-1209, 2002.)
42. Gore, J. P, and Minis, I, Acoustically modulated free jet flames, AIAA, 28th Aerospace Sciences Meeting, Reno, Nevada, United States, 1990.
43. Daenen, M., De Fouw, R. D,. Hamers, B., Janssen P.G.A., Schouteden., Veld, M. A. J., “The Wondrous World of Carbon Nanotubes ‘a review of current carbon nanotube technologies”, Technical Report, Eindhoven University of Technology, 2003.
44. Randall, L. V. W., and Thomas, M. T., “Flame and Furnace Synthesis of Single-Walled and Multi-Walled Carbon Nanotubes and Nanofibers”, Physical Chemistry B, Vol. 105, p. 10249-10256, 2001.
45. Randall, L. V. W., Thomas, M. T., and Valerie, E. C., “Flame Synthesis of Metal-Catalyzed Single-Wall Carbon Nanotubes”, Physical Chemistry A, Vol. 104, p. 7209-7217, 2000.
46. Randall, L. V. W., Lee, J. H., and Gordon, M. B., “Optimization of flame synthesis for carbon nanotubes using supported catalyst”, Physical Chemistry B, Vol. 106, p. 13122-13132, 2002.
47. Stephen, D. T., “Stir: encapsulating reactive nanoparticles in carbon nanotubes using flame-based synthesis”, Final Report, Department of Mechanical and Aerospace Engineering, Rutgers University, 2008.
48. Murray J. H., Jack B. H., Jefferson W. T., and John B. V. S., “Flame synthesis of single-walled carbon nanotubes”, Carbon, Vol. 42, p. 2295-2307, 2004.
49. Prikhod’ko, N. G., “Synthesis of Fullerenes in Hydrocarbon Flames Assisted by a Glow Discharge”, Physical Chemistry B, Vol. 4, p. 486-491, 2009.
50. Randall, L. V. W., and Thomas, M. T., “Comparative flame and furnace synthesis of singlewalled carbon nanotubes”, Chemical Physics Letters, Vol. 336, p. 24-32, 2001.
51. Sang, K. W., Young, T. H., and Oh, C. K., “Flame synthesis of carbon nanotubes using a double-faced wall stagnation flow burner”, Carbon, Vol. 47, p. 912-916, 2009.
52. Randall, L. V. W., Lee, J. H., and Gordon, M. B., “The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts”, Vol. 29, p. 1079-1085, 2002.
53. Randall, L. V. W, “Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes”, Chemical Physic Letters, Vol.324, p. 217-223, 2000.
54. Yuan, L., Saito, K., Hu, W., Chen, Z., “Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes”, Chemical Physics Letters, Vol. 346, p. 23-28, 2001.
55. Liming, Y., Kozo, S., Chunxu, P., Williams, F. A., and Gordon, A. S., “Nanotubes from methane flames”, Chemical Physics Letters, Vol. 340, p. 237-241, 2001.
56. Fusheng, X., Xiaofei, L, Stephen, D. T, Frederic, C., and Bernard, H. K., “Flame synthesis of zinc oxide nanowires”, Chemical Physics Letters, Vol. 449, p. 175-181, 2007.
57. Lee, G. W., Jurng, J. and Hwang, J., “Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame”, Combustion and Flame, Vol. 139, p. 167-165, 2004.
58. Unrau, C. J, Axelbaum, R. L., Biswas, P., and Fraundorf, P., “Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics”, Proceedings of Combustion Institute, Vol. 31, p. 1865-1872, 2007.
59. Hou, S. S., Huang, W. C., and Lin, T. H, “Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment”, Nanoparticle Research, Vol. 14, p. 1-11, 2012.
60. Fusheng, X., Hong, Z, and Stephen, D. T., “Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames”, Proceedings of The Combustion Institute, Vol. 31, p. 1839-1847., 2007.
61. Hu, W. C., Hou, S. S., and Lin, T. H., “Analysis on Controlling Factors for the Synthesis of Carbon Nanotubes and Nano-Onions in Counterflow Diffusion Flames”, Nanoscience and Nanotechnology, Vol. 13, p. 1-7, 2013.
62. Li, T. X., Zhang, H. G, Wang, F. J., Chen, Z., and Saito, K., “Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane-air diffusion flames”, ”, Proceedings of The Combustion Institute, Vol. 31, p. 1849-1856., 2007.
63. Merchan-merchan, W., Saveliev, A. V., and Taylor, A. M., “High rate flame synthesis of highly crystalline iron oxide nanorods”, Nanotechnology, Vol. 19, p. 1-5, 2008.
64. Randall, L. V. W., and Lee, J. H., “Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences”, Chemical Physics Letters, Vol. 349, p. 178-184, 2001.
65. Randall, L. V. W., Thomas, M. T., and Valerie, E. C., “Diffusion flame synthesis of single-walled carbon nanotubes”, Chemical Physics Letters, Vol. 323, p. 217-223, 2000.
66. Merchan-merchan, W., Saveliev, A., Kennedy, L. A., and Fridman, A., “Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts”, Chemical Physics Letters, Vol. 354, p. 20-24, 2002.
67. Chung, D. H., and Lin, T. H., “Nitrogen dilution effect on flame synthesis of carbon nanostructures with acoustic modulation”, Physical Chemistry C, Vol. 115, p. 16287-16294, 2011.
68. Shunpei, N., Takeshi, Y., Masahiko, M., “Flame synthesis of carbon nanotubes in a wall stagnation flow”, Chemical Physics Letters, Vol. 403, p. 158-162, 2005.
69. Baker, R. T. K., Barber, M. A., Harris, P. S., Feates, F. S., and Waite, R. J., “Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene”, Catalysis, Vol. 26, p. 51-62, 1972.
70. Hou, S. S., Chung, D. H., and Lin, T. H., “High-yield synthesis of carbon nano-onions in counterflow diffusion flames”, Carbon, Vol. 47, p. 938-947, 2009.
71. Merchan-merchan, W., Saveliev, A. V., and Kennedy, L. A., “High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control”, Carbon, Vol. 42, p. 599-608, 2004.
72. Takeno, T., and Kotani, Y., “An experimental study on the stability of jet diffusion flame”, Acta Astronautica, Vol. 2, p. 999-1008, 1975.
73. Fumiaki, T., Schmoll, W. J., and Katta, V, W., “Attachment mechanisms of diffusion flames”, Symposium on Combustion, Vol. 27, p. 675-684, 1998.
74. Shaddix, C. R., and Smyth, K. C., “Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames”, Combustion and Flame, Vol. 107, p. 418-452, 1996.
75. Hardalupas, Y., and Selbach, A., “Imposed oscillations and non-premixed flames”, Progress in energy and Combustion Science, Vol. 28, p. 75-104, 2002.
76. Jenbernd, H., Rainer, S., and Henneing, B., “Soot formation and oxidation in oscillating methane–air diffusion flames at elevated pressure”, Applied Optics, Vol. 44, p. 6673-6681, 2005.
77. Ezekoye, O. A., Martin, K. M., and Bisetti, F., “Pulsed flow modulation of soot production in a laminar jet-diffusion flame”, Proceedings of The Combustion Institute, Vol. 30, p. 1485-1492, 2005.
78. Chao, Y. C., and Jeng, M. S., “Behavior of the lifted jet flame under acoustic excitation”, Symposium on Combustion, Vol. 24, p. 334-340, 1992.
79. Chao, Y. C., Yuan, T., and Jong, Y. C., “Measurements of the stabilization zone of a lifted jet flame under acoustic excitation”, Experiments in Fluids, Vol. 17, p. 381-389, 1994.
80. Chao, Y. C., Wu, D. C., And Tsai, C. H., “Effects of Acoustic Excitation on the Combustion and Pollution Emission Characteristics of a Jet Flame”, Transport Phenomena, Vol. 00, p. 1-13, 2000.
81. Charwath, M., Hentschel, J., Bockhorn, H., and Suntz, R., “Behavior of Moderately Oscillating Sooting Methane-Air Diffusion Flames”, Flow-Turbulence and Combustion, Vol. 82, p. 553-569, 2009.
82. Kistler, J. S., Sung, C. J., Kreut, T. G., and Law, C. K., “Extinction of counterflow diffusion flames under velocity oscillations”, Symposium on Combustion, Vol. 26, p. 113-120, 1996.
83. Sai, K. O., and Hyn, D. S., “A visualization study on the effect of forcing amplitude on tone-excited isothermal jets and jet diffusion flames”, Energy Research, Vol. 22, p. 343-354, 1998.
84. Demare, D., and Baillot, F., “Acoustic enhancement of combustion in lifted nonpremixed jet flames”, Combustion and Flame, Vol. 139, p. 312-328, 2004.
85. Kimura, I., “Stability of laminar-jet flames”, Symposium of Combustion, Vol. 10, p. 1295-1300, 1965.
86. Lakshminarasimhan, K., Clemens, N. T., and Ezekoye, O. A., “Characteristics of strongly-forced turbulent jets and non-premixed jet flames”, Experiments in Fluids, Vol. 41, p. 523-542, 2006.
87. Turns, S.R., “An introduction to combustion”, 3rd ed., Mcgraw-Hill, 1996.
88. Li, T. X., Kuwana, K., Saito, K., Zhang, H., and Chen, Z., “Temperature and carbon source effects on methane-air flame synthesis of CNTs”, Proc. Combust. Inst., Vol. 32, p. 1855-1861, 2009.