| 研究生: |
洪世瑋 Hung, Shih-Wei |
|---|---|
| 論文名稱: |
生長奈米碳管用鐵-矽薄膜催化劑特性之探討 On the Characteristics of Iron-Silicon Thin Film Catalysts for Growth of CNTs |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 奈米碳管 、鐵-矽 、共濺鍍法 |
| 外文關鍵詞: | CNT, Fe-Si, co-sputtering |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
從先前的研究當中發現若以鐵-矽薄膜作為奈米碳管成長時的催化劑,我們可以在低於370 ℃ 的低溫下以13 μm/min 高成長速度合成準直性的奈米碳管(丁志明,廖坤厚-低溫、非線性快速成長準直性奈米碳管, CPL, 2004)。此乃由於額外的矽添加進入鐵形成鐵-矽催化劑故可以在低溫之下快速合成出奈米碳管。因此對於此催化劑的特性以及奈米碳管成長之間的相互關係必須做更深一步的了解以及研究。有鑑於此,在本研究當中,我們將著重於探討鐵-矽薄膜催化劑的特性。鐵-矽薄膜是以共濺鍍法(co-sputter)製備而成,而藉由改變不同的沉積條件以得到不同特性的薄膜。以共濺鍍法沉積出來的鐵-矽薄膜中有bcc -Fe及非晶質的矽,而bcc -Fe的優選方位為(110)。經過氫氣電漿蝕刻過的鐵-矽薄膜會形成球型顆粒狀,根據不同的矽含量會形成不同的結晶化合物,而顆粒內部中心為具有非晶質矽的結構。如此的差異將影響其對奈米碳管的生長。舉凡影響共沉積鐵-矽薄膜的鍍膜參數,包含:工作壓力、電極距離、 DC 和 RF 的濺鍍功率瓦數以及鍍膜時間。此鐵-矽薄膜以穿透式電子顯微鏡 (TEM)、能量分散光譜儀 (EDX)、低角度入射X光繞射儀 (grazing incident XRD) 以及掃描式電子顯微鏡 (SEM) 進行分析及觀察。奈米碳管則是以鐵-矽薄膜作為催化劑並以微波電漿輔助化學氣象沉積系統 (MPCVD) 合成之。
Abstract
We have reported previously very fast growth (13μm/min) of aligned carbon nanotubes (CNT) at low temperature (less than 370 ℃) in the presence of Fe-Si thin film catalyst (Jyh-Ming Ting, Kun-Hou Liao, “Low-temperature, Nonlinear Rapid Growth of Aligned Carbon Nanotubes, CPL, 2004). The very fast, low temperature growth was attributed to the addition of Si into Fe. However, further understanding of the relationship between the nature of the catalyst and the CNT growth requires additional studies. Among them, we have addressed in this study the characteristics the Fe-Si thin film catalyst. A co-sputtering deposition method was used to deposit Fe-Si thin films under different deposition conditions to obtain thin films with various characteristics. As-deposited Fe-Si film consists of bcc -Fe with a preferred (110) orientation and amorphous Si. Hydrogen plasma etched Fe-Si films become particles having different kinds of compounds, depending on the composition or an amorphous Si core. Such a difference has a significant consequence on the growth of CNTs. The co-deposition parameters that were varied include working pressure, electrode distance, DC and RF power wattage, and deposition time. The resulting Fe-Si thin films were examined using high-resulotion transmission electron microscopy (HRTEM), energy dispersion of x-ray (EDX) analysis, grazing incident XRD (GIXRD) and scanning electron microscope (SEM). Fe-Si thin films exhibiting different thicknesses, compositions, crystallinity, microstructure, and topography were obtained. Selected Fe-Si thin films were also used for the growth of CNT using a microwave plasma chemical vapor deposition (MPCVD) method.
參考文獻
1 C. Emmenegger et al. Carbon 41(2003) 539-547.
2 Cassel AM, Raymakers JA, Kong J, et al. J Phys Chem B. 103 (1999) 6484.
3 Chen P, Zhang HB, Lin GD et al. Carbon. 35 (1997) 1495.
4 Dai HJ, Rinzier AG, Nikolaev P, et al. Chem Phys Lett. (1996) 260:471.
5 Thess A, Lee R, Nikolaev P, et al. Science. (1996) 273: 483.
6 Hernadi K, Fonseca A, Nagy JB, et al. Appl Cata A. (2000) 199:245.
7 Kitiyanan B, Alvarez WE Harwell JH et al. Chem Phys Lett . (2000) 317:497.
8 Jonrnet C, Maser WK, Bernier P, et al. Nature. (1997) 388: 756.
9 Hou, Peng-Xiang Carbon, v 41, n 13, (2003) 2477-2480.
10 Wang, X. Scripta Materialia, v 44, n 8-9, (2001) p 1567-1570.
11 Fan YY, Li F, Cheng HM, et al., J. Mater Res. (1998) 113:2342.
12 C.J. Lee et al. /Chemical Physics letters 327 (2000) 277-283.
13 Padmakar D. Kichambare et al. Carbon 40 (2002) 1903-1909.
14 Jyh-Ming Ting, Kun-Hou Liao Chemical Physics Letters 396(2004) 469–472
15 R.I. Batalov, R.M. Bayazitov, I.B. Khaibullin, E.I. Terukov and
V.Kh.Kudoyarova, Nanotechnology 12 (2001) p. 409.
16 Terai, Yoshikazu et al.Optical Materials, v 27, n 5, February, (2005) Si-Based
Photonics: Towards True Monolithic Integration, p 925-928.
17 Atanassov, A. et al. Vacuum, v 76, n 2-3, Nov 5, (2004) 13th International
School on Vacuum, Electron and Ion Technology, p 277-280.
18 Zhengxin Liu, Okoshi M et al./ J.Vac. Sci. Technol. A 17(1999) 619.
19 Zhao Jian-Hua et al. Chin. Phys. Lett. 16 (1999) 208.
20 M. Fanciulli et al. Physical Review B 59 5 (1999) 3675.
21 Y. Murakami, et al.Thin Solid Films 461 (2004) 68– 71.
22 M. Nikolaeva, et al. Vacuum 69 (2003) 221–225.
23 Kensuke Akiyama, et al. Journal of Crystal Growth 237–239(2002)
1951–1955.
24 D.H. Tassis, et al. Thin Solid Films 310 (1997) 115-122.
25 Milosavljevic M, Shao G, Bilic N, Mckinty CN, Jeynes C, Homewood KP.
Appl Phys Lett (2001);79:1438.
26 Vacuum 74 (2004) 653–657.
27 D. Berling et al. Journal of Magnetism and Magnetic Material 212 (2000)
323-336.
28 Journal of Magnetism and Magnetic Materials 62 (1986) 215-220.
29 C.J. Lee et al. /Chemical Physics letters 327 (2000) 277-283.
30 M. Fanciulli et al. Physical Review B 59 5 (1999) 3675.
31 H. Dai, “Carbon nanotubes: opportunities and challenges” Surface Sci., 500
103
(2002) 218.
32 J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z.Benes,
and J. E. Fischer, Appl. Phys. A, 74(2002), 339.
33 M. S. Dresselhaus, G. Dresselhaus, and P.C. Eklund., “Science of fullerenes
and carbon nanotubes” Academic, San Diego, (1996).
34 S. Frank, P. Poncharal, Z. L. Wang, and Walt A. de Heer, “Carbon Nanotube
Quantum Resistors” Science, 280 (1998) 1744.
35 W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270(1995),1179.
36 O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach,
J. Vac. Sci. Technol. B, 18(2000), 665.
37 J. Amaratunga, Applied Physics Letters, 79(2001), 2079.
38 A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Applied
Physics Letters, 76(2000), 3813.
39 J. M. King, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related
Materials, 9(2000), 1184.
40 H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Applied Physics
Letters, 76(2000), 1776.
41 W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han,Y. H.
Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Applied Physics Letters,
75(1999), 3129.
42 A. van Oostrom, J. Appl. Phys., 33(1962), 2917.
43 P. Collins and P. Avouris, Scientific American, Dec. (2000) 38.
44 B. I. Yakobson, in Fullerenes-Recent Advances in the Chemistry and Physics
of Fullerenes and Related Materials, R. S. Ruoffand K. M. Kadish, Eds.
(Electrochemical Society, Pennington, NJ, (1997), vol.5(97-42), pp. 549-560.
45 M. P. Campbell, C. J. Brabec, J. Bernholc, Comput. Mater. Sci.8(1997), 341.
46 B. T. Kelly, Physics of Graphite Applied Science, London, (1981).
47 B. I. Yakobson, Appl. Phys. Lett. 72(1998), 918.
48 P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 81(1998), 5346.
49 M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc, Phys. Rev. B,
57(1998), R4277.
50 M. Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett.
81(1998), 4656.
51 P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 283(1999),
1513.
52 J. Cumings and A. Zettl, Science, 289(2000), 602.
53 M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Topics in
Current Chemistry, 199(1998), 1.
104
54 R. S. Ruoff and D. C. Lorents, Carbon, 33(1995), 925.
55 S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84(2000), 4613.
56 J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B, 59(1999),
R2514.
57 W. Yi, L. Lu, D-L Zhang, Z. W. Pan, and S. S. Xie, Phys. Rev. B, 59(1999),
R9015.
58 S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84(2000), 4613.
59 M. A. Osman and D. Srivastava, Nanotechnology, 12(2001), 21.
60 M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson,
and J. E. Fischer: in press.
61 J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z.Benes,
and J. E. Fischer, Appl. Phys. A, 74(2002), 339.
62 M. Endo and H. W. Kroto, Journal of Physical Chemistry, 96(1992),6941.
63 Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, Chemical
Physics Letters, 304(1999), 277.
64 R. T. K. Baker and P. S. Harries, Chemistry and Physics of Carbon, Marcel
Dekker, New York(1978), 83.
65 R. T. K. Baker, M. A. Braber, P. S. Harries, F. S. Feates, and R. J.Waite,
Journal of Catalysis, 26(1972), 51.
66 R. T. K. Baker and J. J. Chludzinski, Journal of Catalysis, 64(1980), 464.
67 A. Oberlin, M. Endo, and T. Koyama, Carbon, 14(1976), 133.
68 A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth, 32(1976), 335.
69 T. Baird, J. R. Fryer, and B. Giant, Carbon, 12(1974), 591.
70 R. T. K. Baker and P. S. Harries, Chemistry and Physics of Carbon, Marcel
Dekker, New York(1978), 83.
71 Y. J. Yoon and H. K. Baik, Diamond and Related Materials, 10(2001), 1214.
72 S. Iijima, Nature(London) 354(1991), 56.
73 S. Iijima and T. Ichihashi, Nature, 363(1993), 603.
74 T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki,
Chem. Phys. Lett. 209(1993), 83.
75 S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, and R. Loufty, Carbon 31(1993),
685.
76 P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. de la Chapelle, S.
Lefrant, R. Lee, and J. E. Fischer, Carbon, 36(1998), 675.
77 S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Nature,
366(1993), 637.
78 S. Zhou, S. Seraphin, and S. Wang, Applied Physics letters, 65(1994),1593.
105
79 Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Chemical Physics letters,
236(1995), 419.
80 S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Nature,
366(1993), 637.
81 Y. Saito, M. Okuda, N. Fujmoto, T. Yoshikawa, M. Tomita, and T.
Hayashi, Jpn. J. Appl. Phy., 33(1994), L-526.
82 T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R.E.
Smalley, J. Phys. Chem., 99(1995), 10694.
83 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S.
G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E.
Fischer, and R. E. Smalley, Science, 273(1996), 483.
84 R. T. K. Baker, M. A. Braber, P. S. Harries, F. S. Feates, and R. J. Waite,
Journal of Catalysis, 26(1972), 51.
85 R. T. K. Baker and J. J. Chludzinski, Journal of Catalysis, 64(1980), 464.
86 M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, and J. W. Park,
Diamond and Related Materials, 10(2001), 1235.
87 N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, ct37(1997),
295.
88 Q. Liang, Q. Li, D. L. Chen, D. R. Zhou, B. L. Zhang, Z. L. Yu, Chemical
Journal of Chinese Universities-Chinese, 21(2000), 623.
89 N. M. Rodriguez, M. S. Kim, F. Tortin, I. Mochida, R. T. K. Baker, Applied
Catalyst A, 148(1997), 265.
90 C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, K. S. No, Chemical Physics
Letters, 327(2000), 277.
91 N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, ct37(1997),
295.
92 K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi, Applied Catalysis A,
199(2000), 245.
93 W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A.
Zhao, and G. Wang, Science, 274(1996), 1701.
94 Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang,
Chemical Physics Letters, 299(1999), 97.
95 A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys.,
84(1998), 6023.
96 H. Masuda, H. Yamada, M. Satoh, and H. Asoh, Appl. Phys. Lett., 71(1997),
2770.
97 H. Masuda and M. Satoh, Jpn. J. Appl. Phys., Part 2, 35(1996), L126.
106
98 J. Li, C. Papadopoulos, M. Xu, and M. Moskovits, Applied Physics Letters,
75(1999), 367.
99 J. Li, C. Papadopoulos, J. Xu, Nature, 402(1999), 253.
100 A. W. H. Mau, L. Dai, Journal of American Chemical Society, 121(1999),
10832.
101 S. Huang, L. Dai, A. W. H. Mau, Journal of Physical Chemistry B,
103(1999), 4223.
102 D. R. Lide, H. P. R. Frederikse, Handbook of Chemistry and Physics 75th,
CRC Press, London, (1995) p51-52.
103 P.E. Nolan, M. J. Schabel, D. C. Lynch, Carbon, 33(1995), 79.
104 A.A. Khassin, T.M. Yurieva, V.I. Zaikovskii, V.N. Parmon, Reaction
Kinectic and Catalysis Letters, 64(1998), 63.
105 徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳
管之研究, 國立成功大學化學工程研究所博士論文, 2001.
106 寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
107 Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim,
Diamond and Related Materials, 11(2002), 59.
108 Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P.
N. Provencio, Science, 282(1998), 1105.
109 Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen, Applied Physics Letters,
79(2001), 680.
110 K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G.
Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, Applied Physics
Letters, 79(2001), 1534.
111 H. Wang, J. Lin, C. H. A. Huang, P. Dong, J. He, S. H. Tang, W. K. Eng,
and T. L. J. Thong, Applied Surface Science, 181(2001), 248.
112 M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Applied Physics Letters,
77(2000), 3468.
113 C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Applied Physics
Letters, 77(2000), 2767.
114 Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. Park, W. B. Choi, N. S.
Lee, and J. M. Kim, Applied Physics Letters, 76(2000), 2367.
115 C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Applied Physics
Letters, 77(2000), 2767.
116 Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. Park, W. B. Choi, N. S.
Lee, and J. M. Kim, Applied Physics Letters, 76(2000), 2367.
117 C. Bower, W. Zhu, S. Jin, and O. Zhou, Applied Physics Letters, 77(2000),
107
830.
118 Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim,
Diamond and Related Materials, 11(2002), 59.
119 Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N.S. Lee,
and J. M. Kim, Synthesis Metals, 108(2000), 159.
120 Milton Ohring, “Materials Science of Thin Films Second Edition” p176.
121 Tilo P. Drüsedau et.al/Surface and Coating Technology 153(2002) 155-159.
122 Mitsuharu Konuma,”Film Deposition by Plasma Techniques” p130.
123 R. Wuhrer, W. Y. Yeung. Journal of material science 37(2002) 3477-3482.
124 Ruther, R. et al. Thin Solid Films, v 271, n 1-2, Dec 15(1995), p 151-156.
125 J.Diaz, S.M. Valvidares, R. Morales, J.M. Alameda, J. Magnetism and
Magnetic Mater. 242-245(2002) 166.
126 S. Park, R.M. Walser. Carbon 23 (1985) 701.
127 Lee, Paul A. et al. Surface and Interface Analysis, v 17, n 1, Jan, (1991), p
48-56
128 D. D. Wagman, et al. J. Phys. Chem. Ref. Data, 11(suppl. 2) (1982)177.
129 MALIN SELLEBY, METALLURGICAL AND MATERIALS
TRANSACTIONS B, 28B(1997)563
130 K. Ruhrnschopf et al./Surface Science 374 (1997)269-276
131 T. de los Arcos et al., Appl. Phys. Lett., v.80., n.13. (2002) 2383.
132 H. T. Lu., et al. Applied surface Science 212-213 (2003) 204-208
133 G.V. Golubkova, et al., Journal of Alloys and Compounds 307(2000)131
134 H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.k. ENG, T.L.J.
Thong, Applied Surface Science 181(2001) 248.
135 M. Okai, T. Muneyoshi, T. Yaguchi, S.Sasaki, Appl. Phys. Lett. 77(2000)
2767.
136 R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, D.J.C. Yates, J. Catalysis 77(1982)
74.
137 E.G. Wang, Z.G. Guo, J.Ma, M.M. Zkou, Y.K. Pu, S. Liu, G.Y. Zhang, D.Y.
Zhong, Carbon 41(2003)1827.
138 V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L.
Simpson, Appl. Phys. Lett. 79(2001) 2970.
139 Z.B. Yu, M.H. Qiao, H.X. Li, J.F. Deng, Appl. Catal., A Gen.163 (1997) 1.
140 Zhang RB, Li FY, Zhang N, Shi QJ. Appl Catal A: General,239(2003)17–23.
141 T. Katona, A ˆ . Molna´r, J. Catal. 153 (1995) 333.
142 J. Kucera, K. Stransky, Metall. Mater. 30(1992)76.
143 B. Mi;;ion, J. Kucera, P.Michalica, Mater. Sci. Eng. A 190(1995)247.
144 Y.C. Chen, C.M. Chen, K.C. Su, K. Yang, Mater. Sci. Eng. A 133(1991)596.
145 T. de los Arcos. et al. Applied Physics Letters. 80(2002)2383.
校內:2106-07-24公開