簡易檢索 / 詳目顯示

研究生: 方浩羽
Fang, Hau-Yu
論文名稱: 鎳催化二聚合反應:合成及應用二苯駢[de,mn]稠四苯環駢衍生物
Nickel-Catalyzed Cyclodimerization:Synthesis and Application of Annelated Dibenzo[de,mn]naphthacene derivatives
指導教授: 吳耀庭
Wu, Yao-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 非平面結構二苯駢[de,mn]稠四苯鎳催化二聚合反應
外文關鍵詞: non-planner structure, dibenzo[de,mn]naphthacene, nickel-catalyzed, cyclodimerization
相關次數: 點閱:198下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用兩分子的萘環1-溴-8-苯乙炔衍生物於鎳金屬錯合物催化及鋅粉活化下,進行二聚合反應,合成出二苯駢[de,mn]稠四苯的駢環衍生物,其結構為非平面結構。由單晶X-ray分析獲得確認,扭曲角度約為(43.8-66.6o),並根據X-ray單晶結構鍵長與單鍵、雙鍵的差值分析,及理論計算HOMA可知,中心兩個六環是缺少芳香性的。
    在產率調整中,鎳金屬錯合物種類、鋅粉的量、溶劑、及溫度都扮演重要角色。將使用萘環1-溴-8-苯乙炔衍生物、1,2-雙(二苯基膦)乙烷錯合的鎳二價金屬、鋅粉,溶於溶劑1,4-二噁烷中,溫度130-150 ℃反應14小時,此方法皆可利用在鹵素為碘及溴時,的活化可以得到五種二苯駢[de,mn]稠四苯的駢環衍生物,產率為30-69%。並利用四正丁基氟化胺脫矽得到第六種二苯駢[de,mn]稠四苯的駢環衍生物。
    光電物理性質方面六種二苯駢[de,mn]稠四苯的駢環衍生物,氧化還原電位也跟一般多苯環芳香化合物類似,吸收波長都介於黃光到紅光區,因此化合物HOMO-LUMO能差1.81-2.12 eV都相當低。

    Dibenzo[de,mn]naphthacene annelated derivatives has been generated by nickel-catalyzed cyclodimerization. These structure which has been comfirmed by X-ray single-crystal diffraction analysis is non-planar and twist angle about 43.8-66.6o. The bond length and bond alternation in the crystal structures and HOMA theoretical calculations reveal that the central two six-membered rings lack aromaticity.
    Systematic studies of reaction conditions reveal that nickel-catalyst, the amount of zinc powder, slovent and temperature all play key roles in this reaction. The reaction conditions have been optimized. Upon heating 1-bromo-(phenylethynyl)acene with mixture of NiBr2(dppe) and zinc powder in 1,4-dioxane at temperature between 130 to 150 ℃ for 14 hours, we generated 6 kinds of Dibenzo[de,mn]naphthacene annelated derivatives, the isolated yield is between 30% to 69%.
    These Dibenzo[de,mn]naphthacene annelated derivatives show similar perfermoce in oxidation-reduction potential as most PAHs compounds show. In optical physical properties, the maximum absorption wavelenth of these compound is between 551 nm to 647nm, which shows small HOMO-LUMO energy gap(1.81-2.12 eV).

    中文摘要................................................. III 英文摘要................................................. IV 謝誌.................................................... V 表目錄................................................... VIII 圖目錄................................................... IX 壹、前言................................................. 1 (一)過渡金屬催化.......................................... 1 (二)具有碳自由基性質的化合物................................ 3 貳、結果與討論............................................ 12 (一)反應條件最佳化........................................ 12 (二)二苯駢[de,mn]稠四苯衍生物的合成分析...................... 15 (三)利用薗頭偶合反應製備起始物.............................. 17 (四)利用酮類衍生物製備起始物................................ 18 (五)環化二苯駢[de,mn]稠四苯的衍生物......................... 22 (六)合成二苯駢[de,mn]稠四苯衍生物可能的反機構................. 28 (七)二苯駢[de,mn]稠四苯的衍生物光學性質...................... 29 (八)二苯駢[de,mn]稠四苯的衍生物電化學性質.................... 38 (九)晶體結構分析.......................................... 40 (十)晶體結構堆疊分析....................................... 42 (十一)二苯駢[de,mn]稠四苯衍生物HOMA 研究.................... 44 參、結論................................................. 46 肆、實驗................................................. 49 一、實驗儀器及部分細節..................................... 49 二、實驗操作............................................. 51 (一)合成鎳金屬催化劑....................................... 51 (二)合成單炔化合物........................................ 51 (三)合成二苯駢[de,mn]稠四苯衍生物........................... 65 伍、參考文獻.............................................. 72 陸、附錄................................................. 74 一、核磁共振光譜圖......................................... 75 二、X-ray 單晶繞射資料.................................... 91

    1. Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Schmid, G.; Dehm, C. Appl. Phys. Lett. 2003, 82, 4175.
    2. Hasegawa, T.; Takeya, J. Sci. Technol. Adv. Mater. 2009, 10, 024314.
    3. Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Grandi, M. J. D. J. Am. Chem. Soc. 1996, 118, 2843.
    4. Slipchenko, L. V.; Krylov, A. I. J. Chem. Phys. 2003, 118, 6874.
    5. Trost, B. M.; Chan D. M. T. J. Am. Chem. Soc. 1979, 101, 6429.
    6. Fukui K.; Inoue J.; Kubo T.; Nakazawa S.; Aoki T.; Morita Y.; Yamamoto K.; Sato K.; Shiomi D.; Nakasuji K.; Takui, T. synthetic Metals. 2001, 121, 1824.
    7. Tidwell, T. T. Angew. Chem. Int. Ed. 2001, 40, 331.
    8. Saunderson, A. Physics Education 1968, 3, 272.
    9. Montgomery, L. K.; Huffman, J. C.; Jurczak, E. A.; Grendze, M. P. J. Am. Chem. Soc. 1986, 108, 6004.
    10. Kamada, K.; Ohta, K.; Kubo, T.;Shimizu, A.; Morita, Y.; Nakasuji, K.; Kishi, R.; Ohta, S.; Furukawa, S-. I.; Takahashi, H.; Nakano, M. Angew. Chem. Int. Ed. 2007, 46, 3544.
    11. Li, Y.; Heng, W. K.; Lee, B. S.; Aratani, N.; Zafra, J. L.; Bao, N.; Lee, R.; Sung, Y. M.; Sun, Z.; Huang, K. W.; Webster, R. D.; Navarrete, J. T. L.; Kim, D.; Osuka, A.; Casado, J.; Ding, J.; Wu, J. J. Am. Chem. Soc. 2012, 134, 14913.
    12. Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kish i, R.; Shigeta, Y.; Nakano, M.; Tokunaga, K.; Kamada, K.; Kubo, T. J. Am. Chem. Soc. 2013, 135, 1430.
    13. Krygowski, T. M.; Ejsmont, K.; Stepień , B. T.; Cyrański, M. K.; Poater, J.; Solà , M. J. Org. Chem. 2004, 69, 6634.
    14. (a) Umeda, R.; Hibi, D.; Miki,K.; Tobe,Y. Pure Appl. Chem. 2010, 82, 871. (b) Harvey, R. G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, Weinheim, 1997.
    15. (a) Clar, E. The Aromatic Sextet, Wiley, New York, 1972. (b) Clar, E. Polycyclic Hydrocarbons, Vol. 1 and Vol. 2, Academic Press, London, 1964.
    16. Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of OrganicChemistry, Plenum Press, New York, 1975.
    17. (a) Morikawa, T.; Narita, S.; Klein, D. J. J. Chem. Inf. Comput. Sci. 2004, 44, 1891. (b) Randic’, M. Tetrahedron 1975, 31, 1477. (c) Randić, M. Chem. Rev. 2003, 103, 3449.
    18. (a) Haigh, C. W.; Mallion, R. B. Mol. Phys. 1970, 18, 767.(b) Mallion, R. B. Proc. R. Soc. London Ser. A 1975, 341, 429.(c) Aihara, J. i. J. Phys. Chem. A 2003, 107, 11553. (d) Mallion, R. B. Croa. Chem. Acta 2008, 81, 227.
    19. (a) Mitchell, R. H.; Sondheimer, F. J. Am. Chem. Soc. 1968, 90, 530. (b) Meinwald, J.; Young, J. W. J. Am. Chem. Soc. 1971, 93, 725.
    20. (a) Kemp, W.; Storie, I. T.; Tulloch, C. D. J. Chem. Soc. Perkin Trans. 1 1980, 2812. (b) Gleiter, R.; Schaff, H. P.; Rodewald, H.; Jahn, R.; Irngartinger, H. Helv. Chim. Acta 1987, 70, 480.
    21. Wu, T. C.; Chen, C. H.; Hibi, D.; Shimizu, A.; Tobe, Y.; Wu, Y-. T. Angew. Chem. Int. Ed. 2010, 49, 7059.
    22. Wu, T. C.; Tai, C. C.; Tiao, H. C.; Kuo, M. Y.; Wu, Y. T. Chem. Eur. J. 2011, 17, 1930.
    23. Levi, Z. U ; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 2796.
    24. Rivera-Fuentes, P.; Rekowski, M. V. W.; Schweizer, W B.; Gisselbrecht, J. P.; Boudon, C.; Diederich, F. O. Org. Lett., 2012, 14, 4066.
    25. Veller, B. V.; Robinson, D.; Swager, T. M. Angew. Chem. Int. Ed. 2012, 51, 1182.
    26. Yamamoto, G.; Oki, M. Bull. Chem. Soc. Jpn., 1983, 56, 2082.
    27. Toyota, S.; Yamamori, T.; Makino, T.; Oki, M. Bull. Chem. Soc. Jpn., 2000, 73, 2591.
    28. Umeda, R.; Hibi, K.; Tobe, Y. Org. Lett., 2009, 11, 4104.
    29. Sun, Z.; Huang, K. W.; Wu J. Org. Lett., 2010, 12, 4690.
    30. Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc., 2009, 131, 2796.

    下載圖示
    2016-08-09公開
    QR CODE