| 研究生: |
郭學妙 Guo, Syue-Maio |
|---|---|
| 論文名稱: |
棕櫚酸造成肌肉細胞粒線體斷裂與功能異常 Palmitate induces mitochondrial fragmentation and dysfunction in muscle cells |
| 指導教授: |
蔡曜聲
Tsai, Yau-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 棕櫚酸 、粒線體的動態平衡 、粒線體功能 、AMP-activated protein kinase (AMPK) |
| 外文關鍵詞: | palmitate, mitochondrial dynamics, mitochondrial function, AMP-activated protein kinase (AMPK) |
| 相關次數: | 點閱:111 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥胖會增加罹患第二型糖尿病的風險。高脂飲食導致肥胖和增加血液中的游離脂肪酸,當游離脂肪酸堆積在肌肉組織可能會造成胰島素抗性。粒線體功能異常和胰島素抗性被認為是發展成第二型糖尿病的原因。粒線體的動態平衡,藉由融合 (fusion)的分子─mitofusins (Mfn1 和 Mfn2) 及optic atrophy type 1 (Opa1),與分裂(fission)的分子─dynamin-related protein 1 (Drp1) 和Fis1能夠控制粒線體的形態。粒線體的動態平衡維繫著粒線體和細胞的功能,擾亂此平衡關係會導致粒線體功能異常和細胞死亡。在過去文獻也指出,在肥胖和第二型糖尿病中,觀察到粒線體變小,數目較少且內部形態呈現有空泡等改變,以及粒線體功能的降低。因此我們假設高脂所導致的粒線體動態平衡的改變是造成粒線體功能異常的原因。我們利用棕櫚酸 (palmitate) 模擬在高脂的刺激下,分化的肌肉細胞 (C2C12 cells) 會產生粒線體斷裂,接著伴隨粒線體膜電位的下降。粒線體的斷裂可能透過粒線體分裂增加或是融合減少,也有可能兩者同時發生。利用轉染的方式,單獨增加調控粒線體融合蛋白Mfn1 或 Mfn2無法改善棕櫚酸造成的粒線體斷裂;而增加失去粒線體分裂活性的蛋白Drp1-DN,可以抑制棕櫚酸導致粒線體的斷裂和粒線體膜電位的降低。另外,我們發現5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) 可透過AMP-activated protein kinase (AMPK)活化,增加pgc1a、mfn1、mfn2、opa1以及drp1的基因表現。經由AICAR的給予,可以減少棕櫚酸造成粒線體斷裂及粒線體膜電位的下降。綜合以上結果,棕櫚酸造成的粒線體斷裂,會進一步導致粒線體功能異常,然而只要阻斷粒線體斷裂就可以恢復粒線體功能。我們認為當過多的脂質堆積在骨骼肌中,可能會造成粒線體動態平衡的失衡,而導致粒線體功能異常和胰島素抗性。所以調控粒線體動態平衡,可作為治療的方向,減緩代謝相關疾病的進程。
Obese people have high risk of type 2 diabetes. High fat diet increase free fatty acid in circulation, and accumulation of fatty acid in skeletal muscle leads to insulin resistance. Previous reports showed that mitochondrial dysfunction and insulin resistance are involved in the development of type 2 diabetes. Mitochondrial dynamics, including both fusion and fission of mitochondria, exchange the contents of mitochondria and control mitochondrial morphology. Mitochondrial fusion is controlled by mitofusins (Mfn1 or Mfn2) and optic atrophy type 1 (Opa1), whereas mitochondrial fission is controlled by dynamin-related protein 1 (Drp1) and Fis1. Mitochondrial dynamics is important for many mitochondrial and cellular functions, and disruption of this balance results in mitochondrial dysfunction and cell death. Recent studies showed that muscle from obese subjects or from type 2 diabetic patients exhibited reductions of mitochondrial function and size, compared to those from lean volunteers. Therefore, we hypothesize that excess fat shifts the balance of mitochondrial dynamics, further contributing to mitochondrial dysfunction. We treated differential C2C12 muscle cells with palmitate to mimic the high fat condition. Palmitate changed mitochondrial morphology toward fission and decreased mitochondrial membrane potential in C2C12 cells. Because mitochondrial fragmentation can result from decreased mitochondrial fusion or increased mitochondrial fission, we transfected plasmids to affect the balance of mitochondrial fusion/fission in C2C12 cells. Overexpression of Mfn1 or Mfn2 did not affect palmitate-induced mitochondrial fragmentation. However, overexpression of Drp1-K38A, a dominant-mutant form of Drp1, ameliorated palmitate- induced mitochondrial fragmentation and reduction of mitochondrial membrane potential. Furthermore, AICAR increased AMPK phosphoryation and expressions of pgc1a, mfn1, mfn2, opa1 and drp1 in C2C12 cells. Treatment of AICAR partially attenuated mitochondrial fragmentation and completely inhibited reduction of mitochondrial membrane potential caused by palmitate. Thus, these results suggest that palmitate shifts the balance of mitochondrial dynamics toward fission and results in mitochondrial dysfunction, and blockade of mitochondrial fragmentation restores mitochondrial function. Accumulation of lipid in skeletal muscle may cause imbalance of mitochondrial dynamics, leading to mitochondrial dysfunction and insulin resistance. Our study suggests that modulation of mitochondrial dynamics may provide a therapeutic strategy for treating metabolism related disease, such as obesity, type 2 diabetes, and metabolic syndrome.
1. Boden, G., Jadali, F., White, J., Liang, Y., Mozzoli, M., Chen, X., Coleman, E., and Smith, C. 1991. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 88:960-966.
2. Petersen, K.F., and Shulman, G.I. 2006. Etiology of insulin resistance. Am J Med 119:S10-16.
3. Patti, M.E., and Corvera, S. 2010. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31:364-395.
4. Kelley, D.E., He, J., Menshikova, E.V., and Ritov, V.B. 2002. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944-2950.
5. Kim, J.A., Wei, Y., and Sowers, J.R. 2008. Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401-414.
6. Bach, D., Naon, D., Pich, S., Soriano, F.X., Vega, N., Rieusset, J., Laville, M., Guillet, C., Boirie, Y., Wallberg-Henriksson, H., et al. 2005. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54:2685-2693.
7. Stojanovski, D., Johnston, A.J., Streimann, I., Hoogenraad, N.J., and Ryan, M.T. 2003. Import of nuclear-encoded proteins into mitochondria. Exp Physiol 88:57-64.
8. McBride, H.M., Neuspiel, M., and Wasiak, S. 2006. Mitochondria: more than just a powerhouse. Curr Biol 16:R551-560.
9. Hirabara, S.M., Silveira, L.R., Abdulkader, F., Carvalho, C.R., Procopio, J., and Curi, R. 2007. Time-dependent effects of fatty acids on skeletal muscle metabolism. J Cell Physiol 210:7-15.
10. Shulman, G.I. 2000. Cellular mechanisms of insulin resistance. J Clin Invest 106:171-176.
11. Fernandez-Real, J.M., Broch, M., Vendrell, J., and Ricart, W. 2003. Insulin resistance, inflammation, and serum fatty acid composition. Diabetes Care 26:1362-1368.
12. Liu, L., Li, Y., Guan, C., Li, K., Wang, C., Feng, R., and Sun, C. 2010. Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis. J Chromatogr B Analyt Technol Biomed Life Sci 878:2817-2825.
13. Chavez, J.A., and Summers, S.A. 2003. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101-109.
14. Powell, D.J., Turban, S., Gray, A., Hajduch, E., and Hundal, H.S. 2004. Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J 382:619-629.
15. Hirabara, S.M., Curi, R., and Maechler, P. 2010. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol 222:187-194.
16. Rachek, L.I., Musiyenko, S.I., LeDoux, S.P., and Wilson, G.L. 2007. Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 148:293-299.
17. Lambertucci, R.H., Hirabara, S.M., Silveira Ldos, R., Levada-Pires, A.C., Curi, R., and Pithon-Curi, T.C. 2008. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J Cell Physiol 216:796-804.
18. Hoehn, K.L., Salmon, A.B., Hohnen-Behrens, C., Turner, N., Hoy, A.J., Maghzal, G.J., Stocker, R., Van Remmen, H., Kraegen, E.W., Cooney, G.J., et al. 2009. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A 106:17787-17792.
19. Coll, T., Eyre, E., Rodriguez-Calvo, R., Palomer, X., Sanchez, R.M., Merlos, M., Laguna, J.C., and Vazquez-Carrera, M. 2008. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem 283:11107-11116.
20. Weigert, C., Brodbeck, K., Staiger, H., Kausch, C., Machicao, F., Haring, H.U., and Schleicher, E.D. 2004. Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-kappaB. J Biol Chem 279:23942-23952.
21. Crunkhorn, S., Dearie, F., Mantzoros, C., Gami, H., da Silva, W.S., Espinoza, D., Faucette, R., Barry, K., Bianco, A.C., and Patti, M.E. 2007. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem 282:15439-15450.
22. DeFronzo, R.A., and Tripathy, D. 2009. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl 2:S157-163.
23. Kim, J.Y., Hickner, R.C., Cortright, R.L., Dohm, G.L., and Houmard, J.A. 2000. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279:E1039-1044.
24. Simoneau, J.A., Veerkamp, J.H., Turcotte, L.P., and Kelley, D.E. 1999. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13:2051-2060.
25. Bray, G.A., and Popkin, B.M. 1998. Dietary fat intake does affect obesity! Am J Clin Nutr 68:1157-1173.
26. Bonnard, C., Durand, A., Peyrol, S., Chanseaume, E., Chauvin, M.A., Morio, B., Vidal, H., and Rieusset, J. 2008. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789-800.
27. Sparks, L.M., Xie, H., Koza, R.A., Mynatt, R., Hulver, M.W., Bray, G.A., and Smith, S.R. 2005. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926-1933.
28. Collins, T.J., Berridge, M.J., Lipp, P., and Bootman, M.D. 2002. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616-1627.
29. Skulachev, V.P. 2001. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26:23-29.
30. Detmer, S.A., and Chan, D.C. 2007. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870-879.
31. Barni, S., Sciola, L., Spano, A., and Pippia, P. 1996. Static cytofluorometry and fluorescence morphology of mitochondria and DNA in proliferating fibroblasts. Biotech Histochem 71:66-70.
32. Westermann, B. 2010. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872-884.
33. Sesaki, H., and Jensen, R.E. 1999. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147:699-706.
34. Rojo, M., Legros, F., Chateau, D., and Lombes, A. 2002. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663-1674.
35. Olichon, A., Emorine, L.J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., Guillou, E., Delettre, C., Valette, A., Hamel, C.P., et al. 2002. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523:171-176.
36. Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245-2256.
37. Yoon, Y., Krueger, E.W., Oswald, B.J., and McNiven, M.A. 2003. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409-5420.
38. Pich, S., Bach, D., Briones, P., Liesa, M., Camps, M., Testar, X., Palacin, M., and Zorzano, A. 2005. The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14:1405-1415.
39. Chen, H., Chomyn, A., and Chan, D.C. 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185-26192.
40. Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., and Lenaers, G. 2003. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743-7746.
41. Parone, P.A., Da Cruz, S., Tondera, D., Mattenberger, Y., James, D.I., Maechler, P., Barja, F., and Martinou, J.C. 2008. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 3:e3257.
42. Bach, D., Pich, S., Soriano, F.X., Vega, N., Baumgartner, B., Oriola, J., Daugaard, J.R., Lloberas, J., Camps, M., Zierath, J.R., et al. 2003. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190-17197.
43. Men, X., Wang, H., Li, M., Cai, H., Xu, S., Zhang, W., Xu, Y., Ye, L., Yang, W., Wollheim, C.B., et al. 2009. Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int J Biochem Cell Biol 41:879-890.
44. Molina, A.J., Wikstrom, J.D., Stiles, L., Las, G., Mohamed, H., Elorza, A., Walzer, G., Twig, G., Katz, S., Corkey, B.E., et al. 2009. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58:2303-2315.
45. Yu, T., Robotham, J.L., and Yoon, Y. 2006. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103:2653-2658.
46. Yu, T., Sheu, S.S., Robotham, J.L., and Yoon, Y. 2008. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341-351.
47. Leone, T.C., Lehman, J.J., Finck, B.N., Schaeffer, P.J., Wende, A.R., Boudina, S., Courtois, M., Wozniak, D.F., Sambandam, N., Bernal-Mizrachi, C., et al. 2005. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101.
48. Ventura-Clapier, R., Garnier, A., and Veksler, V. 2008. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208-217.
49. Soriano, F.X., Liesa, M., Bach, D., Chan, D.C., Palacin, M., and Zorzano, A. 2006. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55:1783-1791.
50. Hardie, D.G., and Sakamoto, K. 2006. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21:48-60.
51. Schimmack, G., Defronzo, R.A., and Musi, N. 2006. AMP-activated protein kinase: Role in metabolism and therapeutic implications. Diabetes Obes Metab 8:591-602.
52. Winder, W.W., Holmes, B.F., Rubink, D.S., Jensen, E.B., Chen, M., and Holloszy, J.O. 2000. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88:2219-2226.
53. Putman, C.T., Kiricsi, M., Pearcey, J., MacLean, I.M., Bamford, J.A., Murdoch, G.K., Dixon, W.T., and Pette, D. 2003. AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol 551:169-178.
54. Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T., and Tabata, I. 2002. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296:350-354.
55. Ojuka, E.O. 2004. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63:275-278.
56. Jager, S., Handschin, C., St-Pierre, J., and Spiegelman, B.M. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017-12022.
57. Lackner, L.L., and Nunnari, J.M. 2009. The molecular mechanism and cellular functions of mitochondrial division. Biochim Biophys Acta 1792:1138-1144.
58. Lackner, L.L., Horner, J.S., and Nunnari, J. 2009. Mechanistic analysis of a dynamin effector. Science 325:874-877.
59. Lee, Y.J., Jeong, S.Y., Karbowski, M., Smith, C.L., and Youle, R.J. 2004. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001-5011.
60. Gao, X., Zhao, X.L., Zhu, Y.H., Li, X.M., Xu, Q., Lin, H.D., and Wang, M.W. 2011. Tetramethylpyrazine protects palmitate-induced oxidative damage and mitochondrial dysfunction in C2C12 myotubes. Life Sci 88:803-809.
61. Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T., and Rizzuto, R. 2001. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690-2701.
62. Parra, V., Eisner, V., Chiong, M., Criollo, A., Moraga, F., Garcia, A., Hartel, S., Jaimovich, E., Zorzano, A., Hidalgo, C., et al. 2008. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77:387-397.
63. van Blitterswijk, W.J., van der Luit, A.H., Veldman, R.J., Verheij, M., and Borst, J. 2003. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199-211.
64. Siskind, L.J., Kolesnick, R.N., and Colombini, M. 2006. Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118-125.
65. De Palma, C., Falcone, S., Pisoni, S., Cipolat, S., Panzeri, C., Pambianco, S., Pisconti, A., Allevi, R., Bassi, M.T., Cossu, G., et al. 2010. Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death Differ 17:1684-1696.
66. Huang, P., Yu, T., and Yoon, Y. 2007. Mitochondrial clustering induced by overexpression of the mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death. Eur J Cell Biol 86:289-302.
67. Santel, A., Frank, S., Gaume, B., Herrler, M., Youle, R.J., and Fuller, M.T. 2003. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763-2774.
68. Legros, F., Lombes, A., Frachon, P., and Rojo, M. 2002. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343-4354.
69. Zhu, P.P., Patterson, A., Stadler, J., Seeburg, D.P., Sheng, M., and Blackstone, C. 2004. Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279:35967-35974.
70. Wang, W., Cheng, X., Lu, J., Wei, J., Fu, G., Zhu, F., Jia, C., Zhou, L., Xie, H., and Zheng, S. 2010. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun 400:587-592.
71. Jones, R.G., Plas, D.R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M.J., and Thompson, C.B. 2005. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283-293.
72. Okoshi, R., Ozaki, T., Yamamoto, H., Ando, K., Koida, N., Ono, S., Koda, T., Kamijo, T., Nakagawara, A., and Kizaki, H. 2008. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 283:3979-3987.
73. Adhihetty, P.J., Uguccioni, G., Leick, L., Hidalgo, J., Pilegaard, H., and Hood, D.A. 2009. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol 297:C217-225.
74. Liesa, M., Borda-d'Agua, B., Medina-Gomez, G., Lelliott, C.J., Paz, J.C., Rojo, M., Palacin, M., Vidal-Puig, A., and Zorzano, A. 2008. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 3:e3613.
75. Fryer, L.G., Parbu-Patel, A., and Carling, D. 2002. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226-25232.
76. Hawley, S.A., Gadalla, A.E., Olsen, G.S., and Hardie, D.G. 2002. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420-2425.
77. Zakikhani, M., Dowling, R., Fantus, I.G., Sonenberg, N., and Pollak, M. 2006. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66:10269-10273.
78. Yoon, M.J., Lee, G.Y., Chung, J.J., Ahn, Y.H., Hong, S.H., and Kim, J.B. 2006. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55:2562-2570.
79. Makino, A., Scott, B.T., and Dillmann, W.H. 2010. Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 53:1783-1794.
80. Edwards, J.L., Quattrini, A., Lentz, S.I., Figueroa-Romero, C., Cerri, F., Backus, C., Hong, Y., and Feldman, E.L. 2010. Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53:160-169.
81. Vincent, A.M., Edwards, J.L., McLean, L.L., Hong, Y., Cerri, F., Lopez, I., Quattrini, A., and Feldman, E.L. 2010. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120:477-489.