| 研究生: |
楊昭端 Yang, Ivy |
|---|---|
| 論文名稱: |
以ICP及UV方法檢測工業級淨水處理用藥及飲用水處理藥劑之差異 Study of the differences between water treatment chemicals in industrial grade and drinking water grade wuth ICP and UV method |
| 指導教授: |
葉茂榮
Yeh, Mou-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 聚氯化鋁 |
| 外文關鍵詞: | poly aluminum chloride |
| 相關次數: | 點閱:147 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水為生活必需品,飲水安全便為人人所關切的話題,而水質處理用藥即為水質優劣關鍵之一。淨水處理廠多用「聚氯化鋁」或「硫酸鋁」作為混凝使用。以聚氯化鋁而言,有關影響水處理功能之成份規範於『主成分』如氧化鋁、pH值、比重、氨氮、硫酸根。至於影響水質及健康顧慮所含雜質(impurities)規範於『不純物』,如鐵、錳、鉛、鋅、鉻、砷、鎘及汞等,都是著眼於水質處理後,不會有高劑量的藥劑及不純物的「殘餘濃度」留存在自來水中影響用水者健康。但這樣的規範似乎過於寬鬆,以致即便以『廢水用聚氯化鋁』闖關亦能合於『飲用水處理藥劑』之規範。亦即此規範提供了交貨廠商足夠的空間以廢水處理藥劑混充飲用水處理藥劑。本次研究指出應訂定更嚴苛之標準以杜絕不肖廠商競價後使用資源回收產品交貨,而水公司限於規範要求不夠嚴苛,要求退貨亦於法無據,處於進退兩難之地,訂定合理交貨規格成為防範未然之先決,而如何於現場迅速決定是否准予交貨亦為本研究之另一重點。
由於有關廢酸之成份分析文件多著眼於『銅』,本次研究內容初始亦一度專注於『銅』的差異,後來發現『鐵』亦為主要差異重點,而『鐵』的檢驗又有非常簡便迅速之方法,可利用於交貨卸貨前立即判定,實為一大收穫。
Since domestic water becomes more and more important in our living time, the security of drinking water had been the main topic to be concerned of. The qualities of the substance that used in water treatment such as coagulant or precipitant must be a critical effect upon the safety of water. Poly aluminum Chloride (PAC) and Aluminum Sulfate are the most popular chemicals that used in five Water Treatment Plant of our county. We had a specification about the impurities of the water treatment chemicals that affect to the health of human being, like ammonium<100 mg/L、sulfate<3.5%、iron<0.01%(100 mg/L)、manganese<25 mg/L、lead<10 mg/L、zinc<10 mg/L、chromium<10 mg/L、arsenic<5 mg/L、cadmium<2 mg/L、mercury<0.2 mg/L. All of these norms are base on whether the residue in the water after treated with chemicals is toxic or wholesome. But this criterion provides supplier a good chance to cheat in legal. I mean, it is easy to achieve the goal even by giving you the chemicals that should be used in wastewater treatment. These studies give us a simple way to recognize what if a poor quality good is taken into the work field by testing the concentration of Cu、Fe、Mn. If we can formulate a clearly guide line to refuse a harmful chemicals using in drinking water treatment, that would be very helpful to everybody’s life.
1.奈米通訊,第七卷第一期 電鍍銅製程之廢液處理
2.American Water Works Association ,”AWWA Standard For Alumin Sulfate”
ANSI/AWWA B403-03
3.飲用水處理藥劑-硫酸鋁中不純物 鎘、鉻、鉛、銀、硒、砷及汞含量檢測NIEA D411.40A
4.飲用水處理藥劑-硫酸鋁中重金屬不純物含量檢測之樣品製備法NIEA D416.40B
5.經濟部中央標準局,聚氯化鋁(自來水用)-CNS12537-K1278
6.經濟部中央標準局,聚氯化鋁(廢水用)-CNS14867-K1282
7.水道用ポリ塩化アルミニウムJIS規格JIS K1475-1996
8.NSF,”Drinkink water treatment chemicals-health effects” ANSI/NSF60-1999.
9.Benefield, L. D., Judkins, J. F., Jr., and Weand, B. L., “Process chemistry
for water and wastewater treatment”, preentice-Hall, Inc. Englewood
10.Benoufella, F., Laplanche, A., Boisdon, V., and Bourbigot, M. M.,
“Elemination of microcystis cyanobacteria (Blue-Green Algae) by an
ozonflotation process : A Pilot Plant Study”, Wat. Sci. Tech., Vol. 30.
11.Bersch, P. M., “Conditions for Al-13 polymer formation in partially neutralized aluminum solutions”, Soil. Sci. Soc. Am. J., Vol. 51, pp. 825
12.鄭智和,黃進修,鍾美華,羅彗瑋,楊炎勝,張蕙蘭,事業廢棄物回收再利用速報第二
十三期,工業技術研究院化學工業研究所,(2000)。
13.蔣立中,江士豪,陳怡齡,黃瓊瑤,林莉芳,電解氧化破壞2-氯酚之研究,第二十五屆
廢水處理研討會論文集620-624,(2000)。
14.Zhou, C.-D. and Chin, D.-T.. Continuous electrolytic treatment of complex
metal cyanides with a rotating barrel plater as the cathode and a packed bed
as the anode, Plating and Surface Finishing/ June, 70-78, (1994).
15.工業污染防制技術,行政院國家科學委員會科學技術資料中心,(1992)。
16.王振乾,張家源,米孝萱,陳啟榮,陳薇色,黃婉如,陳珮蓮,螯合基側鏈對弱酸型樹
脂去除重金屬的影響,第十四屆廢水處理技術研討會論文集661-666,(1999)。
17.Campbell, D.A., Dalrymple, I.M., Sunderland, I.G. and Tilston D.. The
electrochemical recovery of metals from effluent and process streams.
Resource, Conservation and Recycling, 10 25-33, (1994).
18.Chatelut, M., Gobert, E. and Vittori, O.. Silver electrowinning from
photographic fixing solutions using zirconium cathode. Hydrometallurgy,54,79-
90, (2000).
19.Chung Y.H. and Park S.M.. Destruction of aniline by mediated electrochemical
oxidation with Ce(IV) and Co(III) as mediators. J. Appl.Electrochem., 30, 685-
691, (2000).
20.Genders, D. and Weiberg, N. L.. Electrochemistry for a clear environment,
the Electrosynthesis Company, New York, (1992).
21.Grau, J.M. and Bisang, J.M.. Silver electrodeposition from photographic
processing solutions. Chem. Tech. Biotechnol., 53, 105-110, (1992).
22.Holcombe, L.T. and Behrus, G.P.. Comparison of treatment methods for utility
metal cleaning wastes. AIChE National Meeting, Boston, MA, (1986).
23.Hradil, E.F. and Hradil, G.. Electrolytic recovery of precious and common
metals. Metal Finishing / NOVEMBER, 85-88, (1984).
24.Katsuki, K., Hiroshi, N., Shigeharu, M. and Yasuo, K.. Simultaneous
electrochemical removal of copper and chemical oxygen demand using a packed-
bed electrode cell. Journal of applied electrochemistry 16,121-126, (1986).
25.Kim, B.M. and Weininger, J.L.. Electrolytic removal of heavy metals from
wastewaters. Environmental Progress, 1 (2), 121-125,(1982).
26.Simonsson, D.. A flow-by packed-bed electrode for removal of metal ions from
waste waters. Journal of Applied Electrochemistry 14, 595-604,(1984).
27.Yeh, R.S., Wang , Y.Y. and Wan, C.C.. Removal of Cu-EDTA compounds via
electrochemical process with coagulation. Wat. Res, 29 (2), 597-599,(1993).
28.Chang, I. L., Chu, C. P., Lee, D. J., and Huang, C., (1997) “Expression
dewatering of alum- coagulated clay slurries”, Environment Science and
Technology, 31, 5, 1313-1319
29.Chang G. R., Liu J. C., and Lee D. J. (2001) Co-conditioning and dewatering
of chemical sludge and waste activated sludge. Wat. Res., 35, 786-794.
30.Stumm and J Morgan, Aquatic Chemistry, 3rd ed..1996.
31.Chen G. W., Chang I. L., Hung W.T., and Lee D.J. (1996) Regimes for zone
settling of waste activated sludge. Wat. Res., 30, 1844-1850.
32.Chiang, C.F., Lu, C.J., Sung, L.K., and Wu, Y.S. (2001) “Full-scale
evaluation of heat balance for autothermal thermophilic aerobic treatment of
food processing wastewater.” Water Science and Technology, 43(11), 251–258.
33.Chitikela S. and Dentel S. (1998) Dual chemical conditioning and dewatering
of anaerobically digested biosolids: laboratory evaluations. Wat. Environ.
Res., 70(5), 1062-1069.
34.Christensen, J. R., Sorensen, P. B., Christensen, G. L., and Hansen, J. A.,(
1993) “Mechanisms for overdosing in sludge conditioning”, ASCE,Jour.
Envir. Eng., 119 (1), 159-171.
35.Dentel, S. K., (1997) “Evaluation and role of rheological properties in
sludge management”, Wat. Sci. Tech., 36, 11, 1-8
36.Fan A., Turro N. J., and Somasundaran P. (2000) A study of dual olymer
flocculation. Colloids Surfaces A, 162(1-3), 141-148.
37.Groves M. I., Staiger K. M., Branion R. M. R., and Duff S. J. B. (1996) Use
of laboratory-scale vertical sludge press to opt image polymer-enhanced
dewatering of pulp mill waste activated sludge. J. Pulp and Paper Sci.,
22,464-469.
38.Hogg R. (2000) Flocculation and dewatering. Int. J. Miner. Proc., 58, 223-
236.
39.Langer S. J., Klute R., and Hahn H. H. (1994) Mechanisms of floc formation
in sludge conditioning with polymers. Wat. Sci. Tech., 30(8), 129-138.
40.Lee, D. J., and Hsu, Y. H., (1995)“Measurement of bound water in sludge: A
comparative study”, Wat. Envir. Res., 67, 310-316
41.Hogg R., Bunnaul P., and Suharyono H. (1993) Chemical and physical variables
in polymer-induced flocculation. Miner. Metall. Pro., 10, 81-85.
42.水、污水、與廢水之標準水質檢驗法,環境衛生實驗所