| 研究生: |
張凱倫 Chang, Kai-Lun |
|---|---|
| 論文名稱: |
大氣奈米微粒無機鹽類組成特性研究 Water-Soluble Ion Species of Airborne Nanoparticle |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 奈米微粒 、污染事件日 、無機鹽類組成 、粒徑分佈 、重量濃度 |
| 外文關鍵詞: | episode day, nanoparticle, mass concentration, composition of inorganic salt, size distribution |
| 相關次數: | 點閱:271 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在建立大氣奈米微粒採樣技術,並藉現場調查探討奈米微粒粒徑分佈及無機鹽類組成特徵,採樣系統為MOUDI與Nano- MOUDI組合以取得大氣奈米微粒分徑樣品,於設計流量下可分為10~ 18、18~32、32~56、56~100 nm等範圍,收集之微粒以六位數天平及IC分析其重量濃度及無機鹽類成份,包含Cl-、SO42-、NO3-、NH4+、Na+、K+、Mg2+、Ca2+等組成特性。
考慮濾紙最小増重及IC偵測極限,推估採樣時間為48小時。濾紙採樣前後於溫度17±1℃、相對溼度40±3%環境中秤重,所得56~100 nm奈米微粒重量濃度最大誤差為0.020μg/m3,10~56 nm為0.059μg/m3。
研究結果顯示,潮州地區大氣奈米微粒重量濃度濃度為1.29~4.62μg /m3,與PM1、PM2.5、PM10之比值為3.0~8.3%、2.2~6.1%、1.7~4.9%;大寮地區大氣奈米微粒重量濃度濃度為1.17~3.15μg/m3,與PM1、PM2.5、PM10之比值為2.9~8.5%、2.1~6.1%、1.5~4.2%,大氣奈米微粒重量濃度與PM1、PM2.5、PM10重量濃度間相關係數僅0.24、0.21、0.16,PM污染事件日發生係由細微粒濃度增加所引起。將所得結果繪製粒徑分佈圖,大多呈現典型三峰分佈,其中奈米微粒MMD介於16~49 nm間。
化學分析結果,大氣奈米微粒無機鹽類組成中,SO42-含量最高,佔約8.0%、其次為NH4+(5.4%)、NO3-(3.9%),Na+、K+、Mg2+、Ca2+、Cl-等總和佔約4.6%,而未分析之成份則佔78.1%,其中SO42-、NH4+、NO3-易受環境因素而改變含量,而其總含量隨奈米微粒重量濃度增加而減少,顯示奈米微粒受未分析成份影響較大。以SOR/NOR探討不同粒徑硫及氮轉化成粒狀物現象,顯示硫酸鹽及硝酸鹽之轉化成主要發生於0.18~1.8μm間。
This research used a sampling system , composed of MOUDI and Nano- MOUDI , has been applied to take nanoparticles into four groups (10~18、18~ 32、32~56、56~100 nm). The filter was weighed by a ultra-micronbalance . The components were analyzed by IC for identifying the components of Cl-、SO42-、NO3-、NH4+、Na+、K+、Mg2+、Ca2+ .
In this study , the mass concentration of nanoparticle at Chao-Chou station was 1.29~4.62μg/m3 , the values of nano-PM/PM1、nano-PM/PM2.5 and nano-PM/PM10 were 3.0~8.3%、2.2~6.1% and 1.7~4.9% , respectively . The mass concentration of nanoparticle in Da-Liao station was 1.17~3.15μg /m3 , with the ratio of nano-PM /PM1、nano-PM /PM2.5 and nano-PM/PM10 were 2.9~8.5%、2.1~6.1% and 1.5~4.2% , respectively . The correlation of mass concentration between nano-PM and PM1、PM2.5、PM10 was poor . PM episode days were result from the raise of fine particle mass concentration . Size distribution figure shows that atmospheric particles present three mode , the MMD of nanoparticle was 16~49 nm .
The data shows that SO42- was the most abundant component which constitutes 8.0% of the nanoparticle mass , The other dominant species include NH4+(5.4%) and NO3-(3.9%) . Non-analysed species were approximate 78% . It shows that the inorganic species were not the key component in the nanoparticles .
The SOR/NOR to discuss the property of gas-to-particle conversion of particle that have different diameter . The main conversion of sulfate and nitrate were take place at the diameter ranged from 0.18 to 1.8 μm . Though the surface area of nanoparticles were very large , the conversion of sulfate and nitrate were a little .
1. 石宜鑫(2001),超細粒徑微粒濃縮器操作介面之改善與自動化之研究,國立中央大學碩士
論文。
2. 李家青(2002),潮州地區大氣中懸浮微粒(PM1/PM2.5/PM10)成份特性之探討,國立屏東科
技大學碩士論文。
3. 林志忠(1997),大氣中陰離子及重金屬之粒徑分佈及乾沉降研究,國立屏東科技大學碩士
論文。
4. 陳冠志(1998),南高屏地區PM10懸浮微粒污染來源之探討,國立成功大學碩士論文。
5. 陳穩至(2000),大氣中懸浮微粒之特性與來源,國立成功大學碩士論文。
6. 鍾進忠(2000),屏東地區大氣PM10成份特性探討,國立屏東科技大學碩士論文。
7. 何丁舜等(2003),台北地區PM10與腦中風發生率相關性之研究,第十屆氣膠科技研討會。
8. 張章堂(2003),高速奈米微粒量測技術研究,2003永續發展科技與政策研討會。
9. 郭崇義、吳怡芝、郭倍甄、許威毅(2003),Change of composition of atmospheric
particulates(PM2.5/PM10-2.5) in Da-chia Hou-li and Tai-ping area,第十屆氣膠科
技研討會。
10.蔡俊鴻、林銳敏、江鴻龍、張凱倫、林允涵(2003),大氣奈米微粒化學組成特性與氣相前
驅物質關聯性之研究,第十屆氣膠科技研討會。
11.鄭福田、李曜全(2003),可控制粒徑分佈型態奈米氣懸微粒產生技術之研究,2003永續發
展科技與政策研討會。
12.鄭尊仁、雷侑蓁(2003),疾病動物模式奈米微粒毒性探討,2003永續發展科技與政策研討
會。
13.陳賢焜、吳義林(1999),高雄縣懸浮微粒PM10與PM2.5成份與來源,高雄縣環保局期末報
告。
14.Allen A.G., Grenfell J. L., Harrison R.M., James J. Evans M.J. (1999)
Nanoparticle formation in marine airmasses : contrasting behaviour of the open
ocean and coastal environments. Atmospheric Research 51:1-14.
15.Celia N. Cruz and Spyros N. Pandis (1999) Condensation of organic vapors on an
externally mixed aerosol population. Aerosol Science and Technology
31:392-407.
16.Chang, T.Y., Norbeck, J.M., Weinstock, R.B. (1979) An estimate of the NOx
removal rate in an urban atmosphere. Environ. Sci. Technol. 13:1534-1537.
17.Chen S.J. et al. (2003) Characterization of atmospheric PM10 and related
chemical species in southern Taiwan during the episode days. Chemosphere
53:29-41.
18.Chen D.R. (1998) Design and evaluation of a nanometer aerosol differential
mobility analyzer (Nano-DMA). Journal of Aerosol Science 29:497-509.
19.Colbeck I, Harrison RM. (1984) Ozone - secondary aerosol - visibility
relationships in north-west England. Sci Total Environ.34:87-100.
20.Frank M. B., Jay R.O., John H.S. (1997) Mathematical model for gas-particle
partitioning of secondary organic aerosols. Atmospheric Environment
31:3921-3931.
21.Geller, M.D., Kim, S., Misra, C., Sioutas, C., Olson, B.A., and Marple, V.A.
(2002) A methodology for measuring size-dependent chemical composition of
ultrafine particles. Aerosol Science and Technology 36:748-762.
22.Grosjean, D., Friedlander, S.K. (1975) Gas–particle distribution factors for
organic and other pollutants in the Los Angeles atmosphere. J. Air Pollut.
Contr. Assoc. 25:1038-1044.
23.Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I. (1998) Physical and
chemical characterization of atmospheric ultra-fine particles in the Los
Angeles area. Environmental Science & Technology 32:1153-1161.
24.Jay R.O. et al. (1996) Gas/particle partitioning and secondary organic aerosol
yields. Environmental Science and Technology 30:2580-2585.
25.James D. Blando, Barbara J. Turpin (2000) Secondary organic aerosol formation
in cloud and fog droplets: a literature evaluation of plausibility.
Atmospheric Environment 34:1623-1632.
26.Juan, L., Mora, J.F. (1998) Sizing nanoparticles with a focusing impactor :
effect of the collector size. Journal of Aerosol Science 29:589-599.
27.Kaneyasu, N., Ohta, S., Murao, N. (1995) Seasonal variation in the chemical
composition of atmospheric aerosols and gaseous species in Sapporo, Japan.
Atmospheric Environment 29:1559-1568.
28.Kaneyasu N, Yoshikado H, Mizuno T, Sakamoto K, Soufuku M. (1999) Chemical
forms and sources of extremely high nitrate and chloride in winter aerosol
pollution in the Kanto Plain of Japan. Atmospheric Environment 33:1745-1756.
29.Keywood M.D. et al. (1999) Relationships between size segregated mass
concentration data and ultrafine particle number concentrations in urban
areas. Atmospheric Environment 33:2907-2913.
30.Khoder M.I. (2002) Atmospheric conversion of sulfur dioxide to particulate
sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in
an urban area. Chemosphere. 49:675-684.
31.Kittelson D.B., Watts W.F., Johnson J.P. (2004) Nanoparticle emissions on
Minnesota highways. Atmospheric Environment 38:9-19.
32.Kulmala M. et al. (2004) Formation and growth rates of ultrafine atmospheric
particles:a review of observations. Aerosol Science 35:143-176.
33.Lin, J.J. (2002) Characterization of water-soluble ion species in urban
ambient particles. Environment International 28:55–61.
34.Ohta S, Okita T. (1990) A chemical characterization of atmospheric aerosol in
Sapporo. Atmospheric Environment 24A:815-822.
35.Okada Y., Yabumoto J., Takeuchi K. (2002) Aerosol spectrometer for size and
composition analysis of nanoparticles. Journal of Aerosol Science 33:961-965.
36.Pakkanen T. A. et al. (2001) Urban and rural ultrafine (PM0.1) particles in
the Helsinki area. Atmospheric Environment 29:4593-4607.
37.Pierson WR, Brachaczek WW, Mckee DE. (1979) Sulfate emissions from
catalystequipped automobiles on the highway. J Air Pollut Control Assoc.
29:255-257.
38.Roco, M.C. (1998) Reviews of national research programs in nanaparticle and
nanotechnology research, Nanoparticle and nanotechnology research in the USA.
Journal of Aerosol Science 29:749-760.
39.Rosell-Liompart J., Loscertales, I.G., Bingham, D., Mora, J.F. (1996) Sizing
nanoparticles and ions with a short differential mobility analyzer. Journal of
Aerosol Science 27:695-719.
40.Sakurai et al. (2003) On-line measurements of diesel nanoparticle composition
and volatility. Atmospheric Environment 37:1199-1210.
41.Seinfild J.G.. (1986) Atmosphere chemistry and physics of air pollution.
Wiley, New York.
42.Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M. (2001) Sources and
concentration of nanoparticles (<10 nm diameter) in the urban atmosphere.
Atmospheric Environment 35:1193-1202.
43.Spicer C. W. Adv.(1977) Environmental Science and Technology 17:163– 261.
44.Takafumi Seto et al.(1997) Size distribution measurement of nanometer-sized
aerosol particles using DMA under low-pressure conditions. Journal of Aerosol
Science 28:193-206.
45.Tsai YI, Cheng MT. (1999) Size distribution and chemical composition of urban
aerosols during autumn PM10 episodes. Journal of Aerosol Science 30:S523 –
524.
46.Zhiqiang, Q., Siegmann, K., Keller, A., Matter, U., Scherrer, L., Siegmann,
H.C. (2000), Nanoparticle air pollution in major cities and its origin.
Atmospheric Environment 34:443-451