簡易檢索 / 詳目顯示

研究生: 陳彥年
Chen, Yen-Nien
論文名稱: 足底筋膜之生物力學:準靜態模擬
Biomechanics of plantar fascia:A quasi-static simulation
指導教授: 張志涵
Chang, Chih-han
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 足部生物力學足底筋膜炎有限元素分析薄殼元素薄膜元素
外文關鍵詞: finite element method, gait simulation, foot arch, plantar fascia
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 足底筋膜為支撐足弓之重要結構,在我們日常生活的活動中會承受很大的張力,若是筋膜受到的負載超過其所能承受,造成發炎的現象,是為足底筋膜炎。目前認為造成足底筋膜炎之原因可能有很多,不過力學上的負荷過度被認為是最直接原因。所以本研究之目的在探討足底筋膜於步態著地期之力學行為。
    本研究以電腦斷層掃描影像為基礎,利用逆向工程技術重建一完整之足部三維有限元素模型,包含骨頭、軟骨、韌帶、足底筋膜和其他軟組織。在邊界條件設定方面,在小腿遠端給予位移同時在足跟處給一阿基里斯腱的拉力,重建足部步態之過程,來探討整個過程中足底筋膜之受力狀態。
    結果顯示足底筋膜之受力在擺盪前期一開始達到最高點,約為體重的0.7倍。在足底筋膜在靠近跟骨處有明顯之應力集中現象,步態後期之等效應力最大值為前期之2.3倍。絞盤機制的作用可以使筋膜的張力增加66%。
    本研究藉由使用薄膜元素來建構韌帶組織,使足部的模擬更加真實。同時,在脛骨遠端給予位移和在足跟處給予阿基里斯腱之拉力,可以模擬出整個步態著地期之過程。

    Plantar fascia is one of the major arch supporters of foot, it sustains high tension during daily activities. When the loading on the plantar fascia over the tissue’s ability, the plantar fascia is subject to inflammatory reaction called plantar fasciitis. The causes of plantar fasciitis are multifactorial, however mechanical overload has been cited as the major factor. The purpose of this study was to investigate the biomechanical responses of plantar fascia during the whole stance phase.
    A 3-D finite element foot model containing bones, cartilages, ligaments, plantar fascia as well as other soft tissues was constructed. The movements of the foot during stance phase were reproduced by prescribing the kinematics of the proximal part of the tibia. Moreover the Achilles tendon force was applied on calcaneus bone.
    The result shows that the peak tension of plantar fascia was at late stance about 0.7 body weight. A stress concentration occurred near the medial calcaneal tubercle. The fascia peak von Mises stress could be increased by 2.3 times when comparing between late stance and mid-stance. The fascia tension could increase by 66% due to windlass mechanism.
    With the membrane element used in the ligament tissue, this finite element model simulates the foot mechanical structure more accurately. By prescribing the kinematic data of distal tibia during stance phase, current model could reveal the fascia tension during the whole stance phase.

    中文摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景 1 1.1.1 足部的解剖學 1 1.1.2 足弓 5 1.1.3 足底筋膜 6 1.1.4 足底筋膜之功能 7 1.1.5 足底筋膜炎 9 1.2 有限元素法 11 1.2.1 簡介 11 1.2.2 元素種類 12 1.2.3 有限元素之優缺點 14 1.3 文獻回顧 16 1.3.1 阿基里斯腱拉力和身體重力對足底筋膜之影響 16 1.3.2 windlass mechanics對足底筋膜之影響 16 1.3.3 足底筋膜在步態週期之受力分析 17 1.4 研究目的 18 第二章 材料與方法 19 2.1 研究流程 19 2.2 三維足部有限元素模型之建立 21 2.2.1 三維足部幾何模型之建立 21 2.2.2 三維足部有限元素模型之建立 27 2.3材料特性 30 2.4 邊界條件 32 第三章 結果 34 3.1 軟組織的影響 34 3.2 實體元素和薄殼元素之差異 37 3.3 步態模擬 41 3.4 模型的驗證 41 3.5 足底筋脈之等效應力 43 3.6 足底筋脈之等效應變 46 3.7 足底筋膜之力量分佈 48 3.8 足底筋膜張力和阿基里斯腱拉力以及踝關節作用力之關係 50 3.9 韌帶和軟骨對於足底筋膜受力之影響 51 3.10 阿基里斯腱拉力對足底筋膜之影響 54 第四章 討論與結論 55 4.1 模型之建立 55 4.1.1 幾何模型之建立 55 4.1.2 有限元素模型之建立 59 4.1.3 模型之簡化 60 4.2 足底筋膜之力學分析 61 4.2.1 足底筋膜之張力變化 61 4.2.2 足底筋膜之力量分佈 61 4.2.3 足底筋膜之等效應力 62 4.2.4 足底筋膜張力和阿基里斯腱拉力以及踝關節作用力之關係 63 4.3 韌帶和軟骨對於筋膜之影響 65 4.4 阿基里斯腱拉力對筋膜之影響 66 4.5 本模型未來之應用 67 4.6 本研究的限制 68 4.7 結論 70 參考文獻 71 附錄 關節軟骨建立過程 73

    1. Anderson DD, Goldsworthy JK, Li W, James R M, Tochigi Y, and Brown TD, Physical validation of a patient-specific contact finite element model of the ankle. J Biomech. 2007;40(8):1662-9.
    2. Aquino A, and Payne C, Function of plantar fascia. The foot. 1999;(9):73-78.
    3. Carlson RE, Fleming LL, and Hutton WC, The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle. Foot Ankle Int. 2000;21(1):18–25.
    4. Cheung JTM, Zhang M, and An KN, Effects of plantar fascia stiffness on the biomechanical responses of the ankle–foot complex. Clin Biomech. 2004;19 (8):839–846.
    5. Cheung JTM, Zhang M, and An KN, Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech. 2006;21 (2):194–203.
    6. Cheung JT, Zhang M, Leung AK, and Fan YB, Three-dimensional finite element analysis of the foot during standing – a material sensitivity study. J. Biomech.2006;38: 1045–1054.
    7. Cheng HY, Lin CL, Wang HW, and Chou SW. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):1937-44.
    8. Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, and Sharkey NA. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am. 2004;86-A(3):546-52.
    9. Hedrick MR. The plantar aponeurosis. Foot Ankle Int. 1996;17:646-9.
    10. Hicks JH, The mechanics of the foot II. The plantar aponeurosis and the arch. J Anat.1954;88:25–30.
    11. Moore KL, Anatomy. Williams& Wilkins, 1992.
    12. Netter FH, Atlas of human anatomy. Ciba, U.S.A., 1989.
    13. Perry J. Gait analysis: normal and pathological function. Thorofare, NJ: Slack; 1992.
    14. Sharkey NA, and Hamel AJ. A dynamic cadaver model of the stance phase of gait: performance characteristics and kinetic validation. Clin Biomech (Bristol, Avon). 1998;13:420-33.
    15. Wearing SC, Smeathers JE, Urry SR, Hennig EM, and Hills AP. The pathomechanics of plantar fasciitis. Sports Med. 2006;36(7):585-611. Review.
    16. Wu L, Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of virtual Chinese human after plantar ligamentous structure failures. Clin Biomech.2007;22 (2):221–229.

    下載圖示 校內:2010-08-24公開
    校外:2010-08-24公開
    QR CODE