簡易檢索 / 詳目顯示

研究生: 詹子賢
Jan, Tz-Shian
論文名稱: 應用井下陣列資料探討不同地盤反應分析程序之差異性
Comparisons of Ground Response Analysis Procedures with Downhole Array Data
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 井下陣列地盤反應分析等值線性分析非線性分析SHAKE91Cyclic1DDEEPSOILFLAC2D
外文關鍵詞: downhole array, site response analysis, equivalent linear analysis, nonlinear analysis, SHAKE91, Cyclic1D, DEEPSOIL, FLAC2D
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以不同地盤反應分析程序對單一場址進行一維的地盤反應分析,比較不同震幅下其土層加速度與孔隙水壓力歷時,並以井下陣列土層加速度與孔隙水壓力歷時資料比較,分析時以井下陣列底部記錄之地盤加速度為模型輸入底部邊界,利用小地震資料校正場址的土層模型,而後以校正完的土層模型應用於大震幅地震資料分析與比對,並加入孔隙水壓資料進行模擬比較以探討不同地盤反應分析程序對模擬地盤反應的差異性。主要比較非線性與等值線性分析法及總應力與有效應力法在地盤反應的結果,使用四種不同的分析程序SHAKE91、Cyclic1D、FLAC2D、DEEPOSIL進行場址土層的地盤反應分析,分別在時間域與頻率域中進行討論,並使用Cyclic1D、DEEPSOIL、FLAC2D模擬現地孔隙水壓的受震行為,最後探討不同分析程序間的差異性。研究結果顯示:(1)SHAKE91僅適合分析小震幅地震,對大震幅地震的模擬較差,而大震幅地震模擬中,FLAC2D的模擬結果較接近現地反應,(2)以耦合有效應力分析為架構的Cyclic1D,模擬的水壓反應較接近現地孔隙水的受震行為,(3)在模擬土層震動反應方面,非線性分析優於等值線性分析,且耦合分析優於非耦合分析。

    The goals of this research are to compare four site response analysis procedures with downhole array data in Taiwan. The procedures include equivalent linear analysis (SHAKE) and fully nonlinear analyses (Cyclic1D, DEEPSOIL, FLAC2D) that can be further divided into a fully coupled effective stress analysis and uncoupled effective stress analysis. In the aspect of site response simulation, the bottom of the downhole array data is selected as the input motion. Small earthquake analyses are performed to verify the ground model. A large earthquake event with significant excess pore pressure generation is used to compare the performance of the four procedures. Comparisons indicate that: (1) SHAKE91 is only applicable to small earthquakes and FLAC2D are the best of the four procedures in terms of predicting ground accelerations and pore pressure generation; (2) Cyclic1D is the best in predicting the generation of excess pore pressure; (3) nonlinear analyses are better in predicting larger earthquake responses than an equivalent linear analysis and fully coupled effective analyses perform better than uncoupled effective analyses.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 1 1-3 研究方法 2 1-4 論文架構 4 第二章 文獻回顧 5 2-1 一維地盤反應分析假設 5 2-2 地盤反應分析程序 7 2-3 場址效應 8 2-4 總應力分析與有效應力分析 12 2-5 地盤反應分析相關研究 13 第三章 地盤反應分析方法 18 3-1 等值線性分析 18 3-2 非線性分析 19 3-3 地動參數 21 3-3-1 尖峰地表加速度(Peak ground acceleration,PGA) 21 3-3-2 傅式震幅譜(Fourier amplitude spectra) 21 3-3-3 卓越週期(Predominant period) 23 3-3-4 反應譜(Response spectra) 23 3-3-5 艾氏震度(Arias Intensity) 25 3-3-6 土層自然頻率 25 3-3-7 剪應力與剪應變 25 3-3-8 應力折減係數 26 3-4 基線修正(Baseline correction) 27 第四章 地盤反應分析模擬 28 4-1 場址土層模型 28 4-2 土壤參數之選取 31 4-3 輸入地震 39 4-4 SHAKE91 42 4-4-1 SHAKE91基本介紹 42 4-4-2 SHAKE91分析流程 44 4-5 Cyclic1D 46 4-5-1 Cyclic1D基本介紹 46 4-5-2 Cyclic1D分析流程 50 4-6 DEEPSOIL 52 4-6-1 DEEPSOIL基本介紹 52 4-6-2 DEEPSOIL分析流程 56 4-7 FLAC2D 59 4-7-1 FLAC2D 基本介紹 59 4-7-2 FLAC2D 動態模組介紹 60 4-7-3 動態載重與邊界效應 60 4-7-4 阻尼模式與波傳效應 63 4-7-5 超額孔隙水壓力激發模式 66 4-7-6 FLAC2D程式分析流程 67 第五章 地盤反應分析結果之討論與比較 69 5-1 小震幅地震分析 69 5-1-1 加速度歷時比較 70 5-1-2 傅氏震幅譜比較 73 5-1-3 加速度反應譜比較 76 5-1-4 遲滯圈比較 77 5-2 大震幅地震分析 81 5-2-1 加速度歷時比較 82 5-2-2 傅氏震幅譜比較 85 5-2-3 加速度反應譜比較 88 5-2-4 遲滯圈比較 89 5-2-5 超額孔隙水壓比較 94 第六章 各分析方法之討論與比較 100 6-1 等值線性分析與非線性分析之比較 100 6-2 不同分析程序之比較 101 第七章 結論與建議 102 7-1 結論 102 7-2 建議 103 第八章 參考文獻 104 第九章 附錄 108

    賴聖耀、陳圭璋、李豐博、陳志芳、謝明志、賴瑞應 (2005),港灣地區大地監測調查與液化防治之研究(3/3),交通部運輸研究所,ISBN:986-00-0994-5。
    Arias, A. (1970). “A measure of earthquake intensity,” in R. J. Hansen, ed. Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, Massachusetts, pp. 438-483.
    Biot, M. A. (1962). “Mechanics of deformation and acoustic propagation in porous media,” Journal of applied physics, Vol. 33, No. 4, pp. 1482-1498.
    Chan, A. H. C. (1988). “A unified finite element solution to static and dynamic problems of geomechanics,” PhD Thsis, University College of Swansea.
    Chang, W. J., Ueng, T. S., Chen, C. H., Yang, C. W. (2010). “Coupled shear strain-pore pressure responses of soil in shaking table tests,” Soils and foundations, Vol. 50, No. 2, pp. 325-334.
    Darendeli, M. B. (2001). “Development of a new family of normalized modulus reduction and material damping curves,” Department of Civil, Architectural and Environmental Engineering, The University of Texas, Austin, Texas.
    Dikmen, S. U., Ghaboussi, J. (1984). “Effective stress analysis of seismic response and liquefaction: theory,” Journal of Geotechnical Engineering, Vol. 110, No. 5, pp. 628-644.
    Dobry, R. (1985). “Pore pressure model for cyclic straining of sand,” Research Report. 1985-06, Department of Civil Engineering, Rensselaer Polytechnic Institute.
    Dobry, R., Vucetic, M. (1988). “Dynamic properties and seismic response of soft clay deposits,” Department of Civil Engineering, Rensselaer Polytechnic Institute.
    Elgamal, A., Zeghal, M., Tang, H. T., Stepp, J. C. (1995). “Lotung downhole array. I: Evaluation of site dynamic properties,” Journal of Geotechnical Engineering, Vol. 121, No. 4, pp. 350-362.
    Elgamal, A., Yang, Z., Lu, J. (2006).“Cyclic1D: A Computer Program for Seismic Ground Response,” Report No. SSRP-06/05, Department of Structural Engineering, University of California, San Diego.
    Itasca, F. L. A. C. (2008). “Fast Lagrangian Analysis of Continua, Version 6.0 User’s Guide,” Itasca Consulting Group, Inc., U. S. A.
    Hashash, Y. M. A, Groholski, D. R., Phillips, C. A., Park, D, Musgrove, M. (2012). “DEEPSOIL5.1 User Manual and Tutorial,” Department of Civil and Enviromental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
    Hashash, Y. M. A., Phillips, C., Groholski, D. R. (2010). “Recent advances in non-linear site response analysis,” Proceedings of the 5th International Conference in Recent Advances in Geotechnical Eartqhuake Engineering and Soil Dynamics, Paper no. OSP 4.
    Hashash, Y. M. A., Park, D. (2001).“Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment,” Engineering Geology,
    Vol.62, No. 1, pp. 185-206.
    Idriss, I. M. (1990).“ Response of soft soil sites during earthquakes,” Proc. H. Bolton Seed Memorial Symposium. Vol. 2, No. 4,Univ. of California, Berkeley.
    Idriss, I. M., Sun, J. I. (1992). “SHAKE91: A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits,” Center for Geotechnical Modelling, Department of Civil and Environmentall Engineering, University of California, Davis.
    Ishhara, K., Shimizu, K., Yamada, Y. (1981). “Pore water pressures measured in sand deposits during an earthquake,” Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 21, No.4, pp. 85-100.
    Kramer, S. L. (1996).Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey.
    Finn, W. D. L., Lee, K. W., Martin, G. R. (1977). “An effective stress model for liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 517-533
    Matasovic, N., Vucetic, M. (1995). “Seismic response of soil deposits composed of fully-saturated clay and sand layers,” Proceedings of the First International Conference on Earthquake Geotechnical Engineering, Tokyo, Japan.
    Matasovic, N. (1993). “Seismic response of composite horizontally-layered soil deposits,” PhD Thesis, University of California, Los Angeles.
    Park, D., Hashash, Y. M. A. (2004).“Soil damping formulation in nonlinear time domain site response analysis,” Journal of Earthquake Engineering, Vol. 8, No. 2, pp. 249-274.
    Parra, E. (1996). “Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems,” PhD Thesis, Dept.of Civil Engineering, Rensselaer Polytechnic Institute, Troy, NY.
    Phillips, C., Hashash, Y. M. A. (2009). “Damping formulation for nonlinear 1D site response analyses,” Soil Dynamics and Earthquake Engineering, Vol. 29, No. 7, pp. 1143-1158.
    Prevost, J. H. (1985). “A simple plasticity theory for frictional cohesionless soils,” Soil Dynamics and Earthquake Engineering, Vol. 4, No.1, pp. 9-17.
    Schnabel, P. B, Lysmer, J., Seed, H. B. (1972). “SHAKE:A computer program for response analysis of horizontally layered sites,” Report No. EERC 72-12. Univ. of California at Berkeley.
    Seed, H. B. (1975). “Design provisions for assessing the effects of local geology and soil conditions on ground and building response during earthquakes,” in New earthquake design provisions: Seminar sponsored by Professional Development Committee of Structural Engineers Association of Northern California and San Francisco Section of American Society of Civil Engineers, Proceedings, pp. 38-63.
    Seed, H B., Idriss, I. M. (1971). “Test procedures for measuring soil liquefaction characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119.
    Seed, H B., Idriss, I. M. (1970). “Soil moduli and damping factors for dynamic response analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, California.
    Suetomi, I., Yoshida, N. (1998). “Nonlinear behavior of surface deposit during the 1995 Hyogoken-Nambu earthquake,” Soils and Foundations, Vol. 2, pp. 11-22.
    Trifunac, M. D., Brady, A G. (1975). “A study on the duration of strong earthquake ground motion,” Bulletin of the Seismological Society of America, Vol. 65, No. 3, pp. 581-626.
    Yang, Z. (2000). “Numerical modeling of earthquake site response including dilation and liquefaction,” Department of Civil Engineering and Engineering
    Mechanics, Columbia University, New York, NY.
    Yang, Z., Lu, J., Elgamal, A. W. (2004). “A web-based platform for computer simulation of seismic ground response,” Advances in Engineering Software, Vol. 35, No. 5, pp. 249-259.
    Yoshida, N., Iai, S. (1998). “Nonlinear site response and its evaluation and prediction,” Proceedings of the 2nd International Symposium on the Effects of Surface Geology on Seismic Motion, pp. 71-90.
    Zeghal, M., Elgamal, A. W., Tang, H. T., Stepp, J. C. (1995). “Lotung downhole array. II: Evaluation of soil nonlinear properties,” Journal of Geotechnical Engineering, Vol. 121, No. 4, pp. 363-378.
    Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., Paul, D. K., Shiomi, T. (1990). “Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems,” Proceeding of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 429, No. 1877, pp. 285-309.

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE