| 研究生: |
洪逸樺 Hung, Yi-Hua |
|---|---|
| 論文名稱: |
具光子特性手性向列型液晶在感測及顯示元件上的應用研究 Study on The Applications of Photonic Chiral Nematic Liquid Crystals on Sensors and Displays |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 膽固醇液晶 、手性向列型液晶 、溶致型 、熱致型 、布拉格反射 、兩性 、雙穩態裝置 、雙頻液晶 、鐵電性液晶 |
| 外文關鍵詞: | cholesteric liquid crystals, chiral nematic liquid crystals, lyotropic, thermotropic, Bragg reflection, amphitropic, bistable device, dual-frequency liquid crystals, ferroelectric liquid crystals |
| 相關次數: | 點閱:171 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液晶材料是一種存在於固相和液相之間的中間相材料。液晶具有與常規液體相同的各向同性,同時也具有與結晶固體相同的各向異性。具有特殊排列或對稱性的中間相液晶分子可分為主要三類:向列型、膽固醇型和層列型。液晶材料的特殊性質能將會受到溫度、電場、磁場和應力等外部刺激。因此液晶材料在顯示器、光柵裝置和感測裝置的開發中具有巨大的應用潛力。
為了研究手性向列型液晶材料在傳感器和液晶顯示器上的應用,合成了一系列手性材料並將其應用於傳感器和液晶顯示器。
第二章主要探討了膽固醇衍生的手性兩親性液晶的合成及其熱和光學性質。合成自膽固醇和肉桂酸的手性單體膽固醇肉桂酸酯(CCM),其結果顯示出兩親性液晶相。合成的CCM在偏振光學顯微鏡(POM)下顯示出油膩的條紋紋理,對應於加熱至120℃以上並用有機溶劑如二氯甲烷、氯仿、四氫呋喃和甲苯處理後形成的膽固醇液晶相。熱向型和溶致膽固醇液晶都顯示出選擇性的光反射,並且反射光的波長落在可見光區域中,呈現出五顏六色的外觀。結果表明CCM可用於開發溫度和溶劑傳感器。
第三章主要通過手性向列型液晶混合物的光聚合製備印跡光子膜。聚合後,將手性摻雜劑CB15去除並回收。印跡光子膜在沒有手性摻雜劑的情況下顯示出布拉格反射。感測水溶液中的溶劑後,肉眼和紫外光光譜儀分別觀察到顯著的顏色變化和位移峰。此外,還研究了通過印跡光子膜檢測甲醇,乙醇和丙酮中氯仿的含量。結果表明,印跡光子膜可以檢測不同種類的混合溶劑。通過與羅丹明衍生的單體共聚,進一步提高了印跡光子膜的感測功能。合成的改性印跡光子膜可以檢測水溶液中的重金屬離子。這項研究結果成功展現了新型感測薄膜不只可以檢測水溶液中的有機溶劑,同時也能檢測重金屬離子。
第四章我們合成了預先設計的功能單體液晶(4NN),並將其與雙頻膽固醇液晶混合以製造雙頻雙穩態液晶裝置。4NN單體除乙烯基外還含有一個羰基。由於單體結構的設計,功能單體4NN將被聚合成聚合物鏈。雙頻膽固醇液晶使用了雙頻向列液晶HEF951和自行預先合成的手性鐵電液晶3C所獲得。雙頻向列型液晶通過驅動電壓下高低頻交流電場的控制,提供了一種操作這些雙穩態液晶裝置的新方法。手性鐵電液晶3C用於誘導形成向列型液晶的膽固醇液晶相,並降低所製造的雙頻雙穩態液晶裝置的驅動電壓和響應時間。所製造的雙頻雙穩態液晶裝置在一次開和關切換之後顯示出穩定的不透明焦錐態(Focal Conic State)和穩定的透明平面態(Planar State),且不需要能量來維持相態。結果顯示出新設計後的雙頻雙穩態液晶裝置相較於過去的研究有更好的透射率和更快的響應時間。
Liquid crystal materials are mesophases existing between solid and liquid. Liquid crystals show similar fluidity as conventional liquids and reveal anisotropy as crystalline solids. Liquid crystal molecules with special arrangement or symmetry can be divided into three main categories: nematic, cholesteric and smectic. Liquid crystals are sensitive to external stimuli such as temperature, electric field, magnetic field, and stress. Accordingly, liquid crystals have great potential in the development of display, grating devices and sensing devices.
To study the applications of chiral nematic liquid crystals on sensors and liquid crystal displays, a series of chiral materials were synthesized and their applications on sensors and displays were carried out.
In Chapter 2, synthesis of chiral amphitropic liquid crystals derived from cholesterol and study of their thermal and optical properties were carried out. Chiral monomeric cholesteryl cinnamate (CCM) derived from cholesterol and cinnamic acid has been synthesized, showing amphitropic liquid crystal phases. The synthesized CCM exhibits oily streak textures under a polarized optical microscopy (POM), corresponding to the cholesteric liquid crystal phase formed after heating over 120°C and after being treated with organic solvents such as dichloromethane, chloroform, tetrahydrofuran, and toluene. Both the thermotropic and lyotropic cholesteric liquid crystals exhibit selective light reflection, and the wavelength of the reflected light falls in the visible light region showing colorful appearances. The results suggest that CCM could be used for the development of sensors for both temperature and solvents.
In Chapter 3, preparation of imprinted photonic films by photopolymerization of chiral nematic liquid crystal mixture was carried out. After polymerization, the chiral dopant, CB15, was removed and recycled. The imprinted photonic polymer films showed Bragg reflection without the presence of the chiral dopant. Upon sensing solvents in an aqueous solution, significant color changes and peak shifts were observed by the naked eye and ultraviolet-visible spectroscopy, respectively. Furthermore, the sensing of chloroform content in methanol, ethanol, and acetone via the imprinted film was also investigated. The results suggest that the synthesized imprinted photonic films can detect different kinds of mixed solvents. The sensing properties of the photonic films were further improved by copolymerization with a rhodamine-derived monomer. The synthesized modified photonic films can detect heavy metal ions in an aqueous solution. This study successfully demonstrated that the new sensing film could detect not only organic solvents in aqueous solutions but also detect heavy metal ions.
In Chapter 4, we synthesized a pre-designed functional monomeric liquid crystal (4NN) and mixed it with the dual-frequency cholesteric liquid crystal to make bistable dual-frequency liquid crystal devices. The 4NN monomer contains a carbonyl group in addition to the vinyl group. Due to the design of the monomer structure, the functional monomer 4NN was introduced into polymer chain. The dual-frequency cholesteric liquid crystal is obtained using the dual-frequency nematic liquid crystal HEF951 and the pre-synthesized chiral ferroelectric liquid crystal 3C. Dual-frequency nematic liquid crystals provide a reversible switching of bistable liquid crystal devices with each of high and low-frequency AC electric fields under driving voltage. The chiral ferroelectric liquid crystal 3C is used to induce the formation of cholesteric liquid crystal phase and reduce the manufactured bistable dual-frequency liquid crystal device's driving voltage and response time. The manufactured bistable dual-frequency liquid crystal device exhibits a stable opaque focal conic state and a stable transparent planar state after one time on and off switching without any energy to maintain. The results show that the newly designed bistable dual-frequency liquid crystal device reveals better transmittance and faster response time than previous studies.
Chapter 1
1. R. Soref, Thermo‐Optic Effects in Nematic‐Cholesteric Mixtures. Journal of Applied Physics, 1970. 41(7): p. 3022-3026.
2. N. A. Lockwood, J. K. Gupta, and N. L. Abbott, Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surface Science Reports, 2008. 63(6): p. 255-293.
3. C. K. Chang, C. W. Bastiaansen, D. J. Broer, and H. L. Kuo, Discrimination of alcohol molecules using hydrogen-bridged cholesteric polymer networks. Macromolecules, 2012. 45(11): p. 4550-4555.
4. D. Mulder, A. Schenning, and C. Bastiaansen, Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. Journal of Materials Chemistry C, 2014. 2(33): p. 6695-6705.
5. C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions. Analytical chemistry, 2015. 87(8): p. 4546-4551.
6. M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, An optical sensor based on a photonic polymer film to detect calcium in serum. Advanced Functional Materials, 2016. 26(8): p. 1154-1160.
7. A. Ferrarini, S. Pieraccini, S. Masiero, and G. P. Spada, Chiral amplification in a cyanobiphenyl nematic liquid crystal doped with helicene-like derivatives. Beilstein journal of organic chemistry, 2009. 5(1): p. 50.
8. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, Photonic band gap guidance in optical fibers. Science, 1998. 282(5393): p. 1476-1478.
9. H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser. Nature physics, 2006. 2(7): p. 484-488.
10. A. Rahmani and P. C. Chaumet, Optical trapping near a photonic crystal. Optics express, 2006. 14(13): p. 6353-6358.
11. K. Lee and S. A. Asher, Photonic crystal chemical sensors: pH and ionic strength. Journal of the American Chemical Society, 2000. 122(39): p. 9534-9537.
12. K. Ishizaki and S. Noda, Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 2009. 460(7253): p. 367-370.
13. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001. 414(6861): p. 289-293.
14. M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000. 404(6773): p. 53-56.
15. F. Castles, F. Day, S. Morris, D. Ko, D. Gardiner, M. Qasim, S. Nosheen, P. Hands, S. Choi, and R. Friend, Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nature materials, 2012. 11(7): p. 599-603.
16. F. Reinitzer, Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie, 1888. 9(1): p. 421-441.
17. O. Lehmann, Über fliessende krystalle. Zeitschrift für physikalische Chemie, 1889. 4(1): p. 462-472.
18. R. Y. Dong, Introduction to Liquid Crystals, in Nuclear Magnetic Resonance of Liquid Crystals. 1997, Springer. p. 1-24.
19. D. Andrienko, Introduction to liquid crystals. Journal of Molecular Liquids, 2018. 267: p. 520-541.
20. G. Brown and J. Doane, Liquid crystals and some of their applications. Applied physics, 1974. 4(1): p. 1-15.
21. G. Chilaya, G. Hauck, H. D. Koswig, and D. Sikharulidze, Electric‐field controlled color effect in cholesteric liquid crystals and polymer‐dispersed cholesteric liquid crystals. Journal of applied physics, 1996. 80(3): p. 1907-1909.
22. N. Tamaoki, Cholesteric liquid crystals for color information technology. Advanced Materials, 2001. 13(15): p. 1135-1147.
23. J. Schmidtke, S. Kniesel, and H. Finkelmann, Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules, 2005. 38(4): p. 1357-1363.
24. V. A. Mallia and N. Tamaoki, Photochemically driven smectic− cholesteric phase transition in an inherently photoactive dimesogen. Chemistry of materials, 2003. 15(17): p. 3237-3239.
25. P. Shibaev, J. Madsen, and A. Genack, Lasing and narrowing of spontaneous emission from responsive cholesteric films. Chemistry of materials, 2004. 16(8): p. 1397-1399.
26. S. W. Kang, S. Sprunt, and L. C. Chien, Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties. Chemistry of materials, 2006. 18(18): p. 4436-4441.
27. H. S. Kitzerow and P. Crooker, Electric field effects on the droplet structure in polymer dispersed cholesteric liquid crystals. Liquid Crystals, 1993. 13(1): p. 31-43.
28. P. De Gennes and J. Prost, The physics of liquid crystals Oxford Univ. 1995, Press New York.
29. J. H. Liu, The basis and application of liquid crystal. 1996, National Institute for Compilation and Translation.
30. R. J. Bushby and O. R. Lozman, Discotic liquid crystals 25 years on. Current opinion in colloid & interface science, 2002. 7(5-6): p. 343-354.
31. N. S. Cameron, M. K. Corbierre, and A. Eisenberg, 1998 EWR Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Canadian journal of chemistry, 1999. 77(8): p. 1311-1326.
32. J. Barberá, A. C. Garcés, N. Jayaraman, A. Omenat, J. L. Serrano, and J.F. Stoddart, Sugar‐Coated Discotic Liquid Crystals. Advanced Materials, 2001. 13(3): p. 175-180.
33. A. Yoshizawa, Liquid crystal supermolecules stabilizing an optically isotropic phase with frustrated molecular organization. Polymer journal, 2012. 44(6): p. 490-502.
34. P. Sungsittayakorn, P. Limcharone, I. Tang, and O. Phaovibul, Refractive Indices of p-Azoxyanisole (PAA), pp’-di-n-pentyloxyazoxybenzene (PPAB) and Their Mixtures. Molecular Crystals and Liquid Crystals, 1981. 71(3-4): p. 293-301.
35. P. J. Collings and J. W. Goodby, Introduction to liquid crystals: chemistry and physics. 2019: Crc Press.
36. B. Bahadur, Liquid Crystal-Applications And Uses (Volume 1). 1990, World scientific.
37. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, M.D. Nielsen, and P. Bassi, Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express, 2005. 13(19): p. 7483-7496.
38. P. Kumar, S. W. Kang, and S. H. Lee, Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal. Optical Materials Express, 2012. 2(8): p. 1121-1134.
39. A. R. Barron, Physical methods in chemistry and nano science. 2015.
40. I. Dierking, Textures of liquid crystals. 2003: John Wiley & Sons.
41. H. Xianyu, S. T. Wu, and C. L. Lin, Dual frequency liquid crystals: a review. Liquid Crystals, 2009. 36(6-7): p. 717-726.
42. G. Sinha and F. Aliev, Dielectric spectroscopy of liquid crystals in smectic, nematic, and isotropic phases confined in random porous media. Physical Review E, 1998. 58(2): p. 2001.
43. D. Meyerhofer, Elastic and dielectric constants in mixtures of nematic liquid crystals. Journal of Applied Physics, 1975. 46(12): p. 5084-5087.
44. T. Carlsson, B. Žekš, C. Filipič, and A. Levstik, Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*–smectic-A phase transition. Physical Review A, 1990. 42(2): p. 877.
45. P. Perkowski, K. Ogrodnik, D. Łada, W. Piecek, J. Rutkowska, Z. Raszewski, M. Żurowska, R. Dąbrowski, and X. Sun, Dielectric measurements of new antiferroelectric liquid crystals. Opto-Electronics Review, 2008. 16(3): p. 277-280.
46. C. H. Wen and S. T. Wu, Dielectric heating effects of dual-frequency liquid crystals. Applied Physics Letters, 2005. 86(23): p. 231104.
47. M. Xu and D. K. Yang, Dual frequency cholesteric light shutters. Applied physics letters, 1997. 70(6): p. 720-722.
48. K. Skarp and M. Handschy, Ferroelectric liquid crystals. Material properties and applications. Molecular Crystals and Liquid Crystals, 1988. 165(1): p. 439-509.
49. R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, Ferroelectric liquid crystals. Journal de Physique Lettres, 1975. 36(3): p. 69-71.
50. S. T. Lagerwall, Ferroelectric and antiferroelectric liquid crystals. Ferroelectrics, 2004. 301(1): p. 15-45.
51. J. Goodby and T. Leslie, Ferroelectric liquid crystals-structure and design. Molecular Crystals and Liquid Crystals, 1984. 110(1-4): p. 175-203.
52. H. Ueda, T. Akita, Y. Uchida, and T. Kimura, Measuring Magnetically-Tuned Ferroelectric Polarization in Liquid Crystals. Journal of visualized experiments: JoVE, 2018(138).
53. A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, and J. W. Doane, Progress in flexible and drapable reflective cholesteric displays. Journal of the Society for Information Display, 2007. 15(1): p. 9-16.
54. P. Oswald and P. Pieranski, Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments. 2005: CRC press.
55. M. Goscianski, L. Leger, and A. Mircea-Roussel, Field induced transitions in smectic A phases. Journal de Physique Lettres, 1975. 36(12): p. 313-316.
56. I. Dierking, L. Kosbar, A. Afzali-Ardakani, A. Lowe, and G. Held, Two-stage switching behavior of polymer stabilized cholesteric textures. Journal of applied physics, 1997. 81(7): p. 3007-3014.
57. Y. Kim, J. Francl, B. Taheri, and J. L. West, A method for the formation of polymer walls in liquid crystal/polymer mixtures. Applied physics letters, 1998. 72(18): p. 2253-2255.
58. J. H. Liu, H. J. Hung, D. S. Wu, S. M. Hong, and A. Y. Fu, Preparation and electro‐optical behaviors of polymer stabilized liquid crystal cells with chiral matrices derived from (−)‐camphor. Journal of applied polymer science, 2005. 98(1): p. 88-96.
59. Y. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. Doane, Polymer networks formed in liquid crystals. Liquid Crystals, 1995. 19(6): p. 797-801.
60. Y. Fung, A. Borstnik, S. Zumer, D. K. Yang, and J. W. Doane, Pretransitional nematic ordering in liquid crystals with dispersed polymer networks. Physical Review E, 1997. 55(2): p. 1637.
61. R. Q. Ma and D. K. Yang, Freedericksz transition in polymer-stabilized nematic liquid crystals. Physical Review E, 2000. 61(2): p. 1567.
62. M. Petit, A. Daoudi, M. Ismaili, and J. M. Buisine, Electroclinic effect in a chiral smectic-A liquid crystal stabilized by an anisotropic polymer network. Physical Review E, 2006. 74(6): p. 061707.
63. K. H. Kim, B. H. Yu, S. W. Choi, S. W. Oh, and T. H. Yoon, Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure. Optics express, 2012. 20(22): p. 24376-24381.
64. J. Fouassier and P. Photoinitiation, Photocuring: Fundamentals and Applications. Hanser, Munich, 1995.
65. J. P. Fouassier, Basics and Applications of Photopolymerization Reactions. 2010: Research Signpost.
66. W. A. Green, Industrial photoinitiators: a technical guide. 2010: CRC Press.
67. C. E. Corcione, A. Previderio, and M. Frigione, Kinetics characterization of a novel photopolymerizable siloxane-modified acrylic resin. Thermochimica Acta, 2010. 509(1-2): p. 56-61.
68. C. Esposito Corcione and M. Frigione, Influence of stone particles on the rheological behavior of a novel photopolymerizable siloxane‐modified acrylic resin. Journal of Applied Polymer Science, 2011. 122(2): p. 942-947.
69. C. E. Corcione and M. Frigione, Characterization of nanocomposites by thermal analysis. Materials, 2012. 5(12): p. 2960-2980.
70. J. P. Fouassier and J. Lalevée, Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. 2012: John Wiley & Sons.
71. J. A. Pojman, J. Willis, D. Fortenberry, V. Ilyashenko, and A. M. Khan, Factors affecting propagating fronts of addition polymerization: velocity, front curvature, temperatue profile, conversion, and molecular weight distribution. Journal of Polymer Science Part A: Polymer Chemistry, 1995. 33(4): p. 643-652.
72. K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger, and B. A. Garetz, Chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers: from dilute solution to the lyotropic liquid crystal state. Journal of the American Chemical Society, 2003. 125(24): p. 7313-7323.
73. A. Bubnov, M. Kašpar, V. Hamplová, U. Dawin, and F. Giesselmann, Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties. Beilstein journal of organic chemistry, 2013. 9(1): p. 425-436.
74. Y. Ke, C. Zhou, Y. Zhou, S. Wang, S. H. Chan, and Y. Long, Emerging thermal‐responsive materials and integrated techniques targeting the energy‐efficient smart window application. Advanced Functional Materials, 2018. 28(22): p. 1800113.
75. H. K. Kwon, K. T. Lee, K. Hur, S. H. Moon, M. M. Quasim, T. D. Wilkinson, J. Y. Han, H. Ko, I. K. Han, and B. Park, Optically switchable smart windows with integrated photovoltaic devices. Advanced Energy Materials, 2015. 5(3): p. 1401347.
76. Z. Lan, Y. Li, H. Dai, and D. Luo, Bistable smart window based on ionic liquid doped cholesteric liquid crystal. IEEE Photonics Journal, 2017. 9(1): p. 1-7.
77. M. Harsch, J. Karger-Kocsis, and F. Herzog, Strain development in a filled epoxy resin curing under constrained and unconstrained conditions as assessed by Fibre Bragg Grating sensors. Express Polymer Letters, 2007. 1(4): p. 226-231.
78. T. Parnklang, K. Boonyanuwat, P. Mora, S. Ekgasit, and S. Rimdusit, Form-stable benzoxazine-urethane alloys for thermally reversible light scattering materials. eXPRESS Polymer Letters, 2019. 13(1).
Chapter 2
1. F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing. Journal of applied physics, 2003. 94(1): p. 279-283.
2. S. Morris, A. Ford, M. Pivnenko, and H. Coles, Enhanced emission from liquid-crystal lasers. Journal of Applied Physics, 2005. 97(2): p. 023103.
3. T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, Toward practical application of cholesteric liquid crystals to tunable lasers. Journal of Materials Chemistry, 2008. 18(25): p. 3040-3043.
4. J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray, Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proceedings of the National Academy of Sciences, 2016. 113(46): p. 12925-12928.
5. S. M. Salili, J. Xiang, H. Wang, Q. Li, D. A. Paterson, J. Storey, C. Imrie, O. Lavrentovich, S. Sprunt, and J. Gleeson, Magnetically tunable selective reflection of light by heliconical cholesterics. Physical Review E, 2016. 94(4): p. 042705.
6. J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. Storey, C. T. Imrie, and O. D. Lavrentovich, Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Advanced Materials, 2015. 27(19): p. 3014-3018.
7. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Applied physics letters, 2003. 82(1): p. 16-18.
8. M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, Electrotunable non‐reciprocal laser emission from a liquid‐crystal photonic device. Advanced Functional Materials, 2006. 16(14): p. 1793-1798.
9. T. Hellerer, A. M. Enejder, and A. Zumbusch, Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses. Applied Physics Letters, 2004. 85(1): p. 25-27.
10. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Advanced Materials, 2001. 13(14): p. 1069-1072.
11. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, Phototunable lasing in dye-doped cholesteric liquid crystals. Applied Physics Letters, 2003. 83(26): p. 5353-5355.
12. T. H. Lin, Y. J. Chen, C. H. Wu, A.Y. G. Fuh, J. H. Liu, and P. C. Yang, Cholesteric liquid crystal laser with wide tuning capability. Applied Physics Letters, 2005. 86(16): p. 161120.
13. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, Light controllable tuning and switching of lasing in chiral liquid crystals. Optics express, 2005. 13(7): p. 2358-2363.
14. H. Khandelwal, E. P. van Heeswijk, A. P. Schenning, and M. G. Debije, Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. Journal of Materials Chemistry C, 2019. 7(24): p. 7395-7398.
15. T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, Polymer stabilization of phototunable cholesteric liquid crystals. Soft Matter, 2009. 5(19): p. 3623-3628.
16. P. Zhang, A. J. Kragt, A. P. Schenning, L. T. de Haan, and G. Zhou, An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. Journal of Materials Chemistry C, 2018. 6(27): p. 7184-7187.
17. M. Y. Duan, H. Cao, Y. Wu, E. L. Li, H. H. Wang, D. Wang, Z. Yang, W. L. He, and H. Yang, Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization. Physical Chemistry Chemical Physics, 2017. 19(3): p. 2353-2358.
18. A. Saha, Y. Tanaka, Y. Han, C. M. Bastiaansen, D. J. Broer, and R. P. Sijbesma, Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chemical Communications, 2012. 48(38): p. 4579-4581.
19. Y. Zhu, J. Wang, X. Zhu, J. Wang, L. Zhou, J. Li, T. Mei, J. Qian, L. Wei, and X. Wang, Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions. Analyst, 2019. 144(19): p. 5802-5809.
20. P. C. Yang, C. Y. Li, H. Wu, and J. C. Chiang, Synthesis and mesomorphic properties of photoresponsive azobenzene-containing chromophores with various terminal groups. Journal of the Taiwan Institute of Chemical Engineers, 2012. 43(3): p. 480-490.
21. Y. S. Zhang, A. Emelyanenko, and J. H. Liu, Fabrication of resonance core assisted self-assembling gelators derived from cyclohexanone. Journal of the Taiwan Institute of Chemical Engineers, 2016. 65: p. 444-451.
22. H. M. Chen, K. R. Jheng, A. D. Yu, C. C. Hsu, and J. H. Lin, Intercalating purple membranes into 2D β-alanine crystals to enhance photoelectric and nonlinear optical properties. Journal of the Taiwan Institute of Chemical Engineers, 2016. 64: p. 1-8.
23. R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, and B. L. Feringa, Rotational reorganization of doped cholesteric liquid crystalline films. Journal of the American Chemical Society, 2006. 128(44): p. 14397-14407.
24. R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. Bastiaansen, D. J. Broer, and B. L. Feringa, Nanomotor rotates microscale objects. Nature, 2006. 440(7081): p. 163-163.
25. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, Reversible photoswitchable axially chiral dopants with high helical twisting power. Journal of the American Chemical Society, 2007. 129(43): p. 12908-12909.
26. S. Pieraccini, A. Ferrarini, and G. P. Spada, Chiral doping of nematic phases and its application to the determination of absolute configuration. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry, 2008. 20(5): p. 749-759.
27. G. Solladié and R. G. Zimmermann, Liquid crystals: a tool for studies on chirality. Angewandte Chemie International Edition in English, 1984. 23(5): p. 348-362.
28. H. Huang, Y. Cong, Z. Lin, and B. Zhang, Synthesis and properties of side-chain liquid crystalline polymers grafted with chiral dimers containing cholesteryl groups. Liquid Crystals, 2020. 47(5): p. 723-736.
29. Z. P. Liu, X. Z. He, Y. H. Cong, B. Y. Zhang, F. B. Meng, M. Tian, and Y. G. Jia, Synthesis and characterization of two series of pressure-sensitive cholesteric liquid crystal elastomers with optical properties. Liquid Crystals, 2020. 47(1): p. 143-153.
30. Z. P. Liu, Y. H. Cong, X. Z. He, B. Y. Zhang, J. J. Zheng, and F. B. Meng, Synthesis and characterization of chiral azo LCPs with optical properties. Liquid Crystals, 2019. 46(11): p. 1696-1706.
31. Y. R. Ma, X. Z. He, Y. H. Cong, B. Y. Zhang, Z. P. Liu, J. W. Wang, and Y. G. Jia, Phase and optical behaviours of chiral-azo liquid crystal polymethylsiloxanes with isosorbide units. Liquid Crystals, 2020. 47(5): p. 702-714.
32. J. H. Liu, Y. L. Chou, R. Balamurugan, K. H. Tien, W. T. Chuang, and M. Z. Wu, Optical properties of chiral nematic side‐chain copolymers bearing cholesteryl and azobenzene building blocks. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(3): p. 770-780.
33. D. Tunc, C. Le Coz, M. Alexandre, P. Desbois, P. Lecomte, and S. Carlotti, Reversible cross-linking of aliphatic polyamides bearing thermo-and photoresponsive cinnamoyl moieties. Macromolecules, 2014. 47(23): p. 8247-8254.
34. C. W. Bastiaansen, A. Schenning, M. Debije, and D. J. Broer, Nano-textured polymers for future architectural needs. Journal of Facade Design and Engineering, 2013. 1(1-2): p. 97-104.
Chapter 3
1. S. Susarla, V. F. Medina, and S. C. McCutcheon, Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering, 2002. 18(5): p. 647-658.
2. M. Crane, C. Watts, and T. Boucard, Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Sci. Total Environ, 2006. 367: p. 23-41.
3. J. Baby, J. S. Raj, E. T. Biby, P. Sankarganesh, M. Jeevitha, S. Ajisha, and S. S. Rajan, Toxic effect of heavy metals on aquatic environment. International Journal of Biological and Chemical Sciences, 2010. 4(4).
4. A. Kumar, V. Deval, P. Tandon, A. Gupta, and E. D. D’silva, Experimental and theoretical (FT-IR, FT-Raman, UV–vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material:(2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 130: p. 41-53.
5. S. K. Singh, R. Nandi, K. Mishra, H. K. Singh, R. K. Singh, and B. Singh, Liquid crystal based sensor system for the real time detection of mercuric ions in water using amphiphilic dithiocarbamate. Sensors and Actuators B: Chemical, 2016. 226: p. 381-387.
6. N. Popov, L. W. Honaker, M. Popova, N. Usol’tseva, E. K. Mann, A. Jákli, and P. Popov, Thermotropic liquid crystal-assisted chemical and biological sensors. Materials, 2018. 11(1): p. 20.
7. R. Duan, X. Hao, Y. Li, and H. Li, Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode. Sensors and Actuators B: Chemical, 2020. 308: p. 127672.
8. R. Duan, Y. Li, B. Shi, H. Li, and J. Yang, Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Talanta, 2020. 209: p. 120513.
9. P. T. K. Hong and C. H. Jang, Sensitive and label-free liquid crystal-based optical sensor for the detection of malathion. Analytical biochemistry, 2020. 593: p. 113589.
10. L. Qi, S. Liu, Y. Jiang, J. M. Lin, L. Yu, and Q. Hu, Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer. Analytical chemistry, 2020. 92(5): p. 3867-3873.
11. L. Qi, W. Wu, Q. Kang, Q. Hu, and L. Yu, Detection of organophosphorus pesticides with liquid crystals supported on the surface deposited with polyoxometalate-based acetylcholinesterase-responsive supramolecular spheres. Food chemistry, 2020. 320: p. 126683.
12. Y. Zhang and J. Ge, Liquid photonic crystal detection reagent for reliable sensing of Cu2+ in water. RSC Advances, 2020. 10(18): p. 10972-10979.
13. A. Popczyk, Y. Cheret, A. El-Ghayoury, B. Sahraoui, and J. Mysliwiec, Solvatochromic fluorophores based on thiophene derivatives for highly-precise water, alcohols and dangerous ions detection. Dyes and Pigments, 2020. 177: p. 108300.
14. V. G. Isoppo, E. S. Gil, P. F. B. Gonçalves, F. S. Rodembusch, and A.V. Moro, Highly fluorescent lipophilic 2, 1, 3-benzothiadiazole fluorophores as optical sensors for tagging material and gasoline adulteration with ethanol. Sensors and Actuators B: Chemical, 2020. 309: p. 127701.
15. Y. Wu, J. Ji, Y. Zhou, Z. Chen, S. Liu, and J. Zhao, Ratiometric and colorimetric sensors for highly sensitive detection of water in organic solvents based on hydroxyl-containing polyimide-fluoride complexes. Analytica chimica acta, 2020. 1108: p. 37-45.
16. D. B. Myung, S. Hussain, and S. Y. Park, Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal mesogens. Sensors and Actuators B: Chemical, 2019. 298: p. 126894.
17. I. Verma, M. Devi, D. Sharma, R. Nandi, and S. K. Pal, Liquid crystal based detection of Pb (II) ions using Spinach RNA as recognition probe. Langmuir, 2019. 35(24): p. 7816-7823.
18. Z. Xu, L. Zhang, R. Guo, T. Xiang, C. Wu, Z. Zheng, and F. Yang, A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensors and Actuators B: Chemical, 2011. 156(2): p. 546-552.
19. J. Deng, W. Liang, and J. Fang, Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications. ACS applied materials & interfaces, 2016. 8(6): p. 3928-3932.
20. M. Moirangthem, R. Arts, M. Merkx, and A. P. Schenning, An optical sensor based on a photonic polymer film to detect calcium in serum. Advanced Functional Materials, 2016. 26(8): p. 1154-1160.
21. R. Soref, Thermo‐Optic Effects in Nematic‐Cholesteric Mixtures. Journal of Applied Physics, 1970. 41(7): p. 3022-3026.
22. N. A. Lockwood, J. K. Gupta, and N. L. Abbott, Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surface Science Reports, 2008. 63(6): p. 255-293.
23. C. K. Chang, C. W. Bastiaansen, D. J. Broer, and H. L. Kuo, Discrimination of alcohol molecules using hydrogen-bridged cholesteric polymer networks. Macromolecules, 2012. 45(11): p. 4550-4555.
24. D. Mulder, A. Schenning, and C. Bastiaansen, Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. Journal of Materials Chemistry C, 2014. 2(33): p. 6695-6705.
25. C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions. Analytical chemistry, 2015. 87(8): p. 4546-4551.
26. J. H. Liu, P. C. Yang, H. J. Hung, and D. J. Liaw, Photochemical tuning capability of cholesteric liquid crystal cells containing chiral dopants end capped with menthyl groups. Liquid Crystals, 2007. 34(7): p. 891-902.
27. J. H. Liu, H. Fang, and C. C. Chien, Solvent‐tunable colors in imprinted helical structures on polymer template via multiple UV‐induced polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(5): p. 1256-1262.
28. Y. S. Zhang, A. Emelyanenko, and J. H. Liu, Fabrication and optical characterization of imprinted broad‐band photonic films via multiple gradient UV photopolymerization. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(19): p. 1427-1435.
29. M. Harsch, J. Karger-Kocsis, and F. Herzog, Strain development in a filled epoxy resin curing under constrained and unconstrained conditions as assessed by Fibre Bragg Grating sensors. Express Polymer Letters, 2007. 1(4): p. 226-231.
30. K. Sun, Y. Kang, and B. Kim, Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives. eXPRESS Polymer Letters, 2011. 5(1).
31. M. Soroceanu, A. Barzic, I. Stoica, L. Sacarescu, and V. Harabagiu, The influence of polysilane chemical structure on optical properties, rubbed film morphology and LC alignment. Express Polymer Letters, 2015. 9(5).
32. N. Eguchi, K. Kawabata, and H. Goto, Synthesis of electro-optically active polymer composite of poly [2, 2’-bis (3, 4-ethylenedioxythiophene)-alt-fluorene]/hydroxypropyl cellulose showing liquid crystal structure. Express Polymer Letters, 2017. 11(10).
33. T. Parnklang, K. Boonyanuwat, P. Mora, S. Ekgasit, and S. Rimdusit, Form-stable benzoxazine-urethane alloys for thermally reversible light scattering materials. eXPRESS Polymer Letters, 2019. 13(1).
34. J. H. Liu, H. J. Hung, D. S. Wu, S. M. Hong, and A. Y. Fu, Preparation and electro‐optical behaviors of polymer stabilized liquid crystal cells with chiral matrices derived from (−)‐camphor. Journal of applied polymer science, 2005. 98(1): p. 88-96.
35. R. Balamurugan, J. H. Liu, and B. T. Liu, A review of recent developments in fluorescent sensors for the selective detection of palladium ions. Coordination Chemistry Reviews, 2018. 376: p. 196-224.
36. J. H. Liu, Y. H. Hung, S. N. Lin, S. A. Shvetsov, V. Y. Rudyak, A. V. Emelyanenko, and C. Y. Liu, Recyclable liquid crystal polymeric sensor beads based on the assistance of radially aligned liquid crystals. Polymer Journal, 2021. 53(2): p. 373-383.
Chapter 4
1. M. Z. Jacobson and M. A. Delucchi, Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy policy, 2011. 39(3): p. 1154-1169.
2. Y. Hori, K. Asai, and M. Fukai, Field-controllable liquid-crystal phase grating. IEEE Transactions on Electron Devices, 1979. 26(11): p. 1734-1737.
3. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, Multiprimary color display for liquid crystal display projectors using diffraction grating. Optical Engineering, 1999. 38(11): p. 1883-1888.
4. K. P. Proll, J. M. Nivet, K. Körner, and H. J. Tiziani, Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays. Applied optics, 2003. 42(10): p. 1773-1778.
5. S. Kumar, H. Hong, W. Choi, I. Akhtar, M. A. Rehman, and Y. Seo, Acrylate-assisted fractal nanostructured polymer dispersed liquid crystal droplet based vibrant colored smart-windows. RSC advances, 2019. 9(22): p. 12645-12655.
6. V. K. Baliyan, K. U. Jeong, and S. W. Kang, Dichroic-dye-doped short pitch cholesteric liquid crystals for the application of electrically switchable smart windows. Dyes and Pigments, 2019. 166: p. 403-409.
7. H. K. Kwon, K. T. Lee, K. Hur, S. H. Moon, M. M. Quasim, T. D. Wilkinson, J. Y. Han, H. Ko, I. K. Han, and B. Park, Optically switchable smart windows with integrated photovoltaic devices. Advanced Energy Materials, 2015. 5(3): p. 1401347.
8. M. Vasiliev and K. Alameh, Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. Energies, 2019. 12(6): p. 1080.
9. J. Doane, A. Golemme, J. L. West, J. Whitehead Jr, and B. G. Wu, Polymer dispersed liquid crystals for display application. Molecular Crystals and Liquid Crystals, 1988. 165(1): p. 511-532.
10. L. Bouteiller and P. L. Barny, Polymer-dispersed liquid crystals: preparation, operation and application. Liquid crystals, 1996. 21(2): p. 157-174.
11. R. Sutherland, L. Natarajan, V. Tondiglia, and T. Bunning, Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes. Chemistry of Materials, 1993. 5(10): p. 1533-1538.
12. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, Polymer-stabilized liquid crystal blue phases. Nature materials, 2002. 1(1): p. 64-68.
13. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, Electro-optics of polymer-stabilized blue phase liquid crystal displays. Applied Physics Letters, 2009. 94(10): p. 101104.
14. S. Y. Lu and L. C. Chien, A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection. Applied physics letters, 2007. 91(13): p. 131119.
15. A. Y. G. Fuh, S. Y. Chih, and S. T. Wu, Advanced electro-optical smart window based on PSLC using a photoconductive TiOPc electrode. Liquid Crystals, 2018. 45(6): p. 864-871.
16. J. A. Sol, G. H. Timmermans, A. J. van Breugel, A. P. Schenning, and M. G. Debije, Multistate luminescent solar concentrator “smart” windows. Advanced Energy Materials, 2018. 8(12): p. 1702922.
17. C. Meng, E. Chen, L. Wang, S. Tang, M. Tseng, J. Guo, Y. Ye, Q. F. Yan, and H. Kwok, Color-switchable liquid crystal smart window with multi-layered light guiding structures. Optics express, 2019. 27(9): p. 13098-13107.
18. W. J. Yoon, Y. J. Choi, S. I. Lim, J. Koo, S. Yang, D. Jung, S. W. Kang, and K. U. Jeong, A Single‐Step Dual Stabilization of Smart Window by the Formation of Liquid Crystal Physical Gels and the Construction of Liquid Crystal Chambers. Advanced Functional Materials, 2020. 30(4): p. 1906780.
19. B. G. Jeon, T. H. Choi, S. M. Do, J. H. Woo, and T. H. Yoon, Effects of curing temperature on switching between transparent and translucent states in a polymer-stabilized liquid-crystal cell. IEEE Transactions on Electron Devices, 2018. 65(10): p. 4387-4393.
20. H. Sun, Z. Xie, C. Ju, X. Hu, D. Yuan, W. Zhao, L. Shui, and G. Zhou, Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers, 2019. 11(4): p. 694.
21. C. Y. Li, X. Wang, X. Liang, J. Sun, C. X. Li, S. F. Zhang, L. Y. Zhang, H. Q. Zhang, and H. Yang, Electro-optical properties of a polymer dispersed and stabilized cholesteric liquid crystals system constructed by a stepwise UV-initiated radical/cationic polymerization. Crystals, 2019. 9(6): p. 282.
22. X. Yan, Y. Zhou, W. Liu, S. Liu, X. Hu, W. Zhao, G. Zhou, and D. Yuan, Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices. Liquid Crystals, 2020. 47(8): p. 1131-1138.
23. Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, and H. Yang, Effect of Polymer Network Topology on the Electro‐Optical Performance of Polymer Stabilized Liquid Crystal (PSLC) Devices. Macromolecular Chemistry and Physics, 2020. 221(18): p. 2000185.
24. H. Shim, H. K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, Enhancement of frequency modulation response time for polymer-dispersed liquid crystal. Liquid Crystals, 2016. 43(10): p. 1390-1396.
25. I. M. Kalogeras, Glass-transition phenomena in polymer blends. Encyclopedia of polymer blends, 2016. 3.
26. I. Dierking, Textures of liquid crystals. 2003: John Wiley & Sons.
27. F. V. Pereira, R. Borsali, O. Ritter, P. F. Gonçalves, A. A. Merlo, and N. P. D. Silveira, Structure-property relationships of smectic liquid crystalline polyacrylates as revealed by SAXS. Journal of the Brazilian Chemical Society, 2006. 17(2): p. 333-341.
28. C. Benbayer, N. Kheddam, S. Saïdi-Besbes, E. T. de Givenchy, F. Guittard, E. Grelet, A. M. Safer, and A. Derdour, Synthesis and mesomorphic properties of novel [1, 2, 3]-triazole mesogenic based compounds. Journal of Molecular Structure, 2013. 1034: p. 22-28.
29. Y. S. Zhang, C. Y. Liu, A. V. Emelyanenko, and J. H. Liu, Synthesis of predesigned ferroelectric liquid crystals and their applications in field‐sequential color displays. Advanced Functional Materials, 2018. 28(14): p. 1706994.
30. G. H. Timmermans, B. W. Saes, and M. G. Debije, Dual-responsive “smart” window and visually attractive coating based on a diarylethene photochromic dye. Applied optics, 2019. 58(36): p. 9823-9828.
校內:2026-07-27公開