| 研究生: |
潘均祐 Pan, Jun-You |
|---|---|
| 論文名稱: |
真空陰極電弧推進器之研發、設計與測試 The Development, Design and Demonstration of Vacuum Cathode Arc Thruster (VCAT) |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 電力推進 、真空陰極電弧推進器 、電漿 、排氣速度 、衝量 、比衝量 |
| 外文關鍵詞: | Electric propulsion, vacuum cathode arc thruster, plasma, exhaust velocity, single impulse, specific impulse |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電力推進(Electric Propulsion, EP)通過高速排出電漿(plasma)進而產生推力。通常,電力推進系統是透過電力系統消耗和電離其推進劑,進而產生電漿流動。與傳統的化學推進系統相比,EP具有較高的比衝量,意味著推進劑的燃料轉化率也相對地高。本研究的重點是從設計、製作與實測方面進行真空陰極電弧推進器(Vacuum Cathode Arc Thruster, VCAT)的研究與開發。特徵在於,VCAT系統不需要任何額外的推進劑進料系統,因為此系統的陰極同時作為電極與推進劑。至於點火方面,塗覆於陰極表面上的石墨層中產生微小熱點會誘發焦耳加熱,將石墨昇華進而誘導電漿產生與流動。VCAT系統具有尺寸小、重量輕,與系統簡單的優點,非常適用於微型衛星的推進系統。此外,本研究使用具有電感器儲存電源系統的“無觸發”方法來產生脈衝電漿。這種放電方法可以顯著地降低輸入功率。VCAT的推力主要是由電漿流中金屬離子的高速排氣速度(exhaust velocity)所引發;無疑地,離子密度、離子速度和離子電荷皆為重要的性能參數。另一方面,本研究使用電池代替電源供應器以減少整個VCAT系統的電力處理單元,並通過測量放電電流和電壓之間的變化以估算單位脈衝所需的能量為0.266J,並透過離子檢測器來測量離子流為3.55A,離子速度為23150m/s。最後,根據理論分析,本論文VCAT原型可以達到單發衝量為2.3μN·s,比衝值2360s,其相對的整體效率約為10%。
Electric propulsion system (EP) yields a thrust by expelling plasma with high exhaust speed. In general, the propellant of EP is initially consumed and ionized via electric power system and it provides plasma flow. Compared with conventional chemical propulsion, EP has high specific impulse, and resulting high fuel conversion rate of propellant. This study focused on the development of vacuum cathode arc thruster (VCAT) in design, manufacturing and demonstration aspects. Characteristically, it does not need any additional feeding system of propellant because that cathode electrode doubles as propellant simultaneously. For the ignition process, tiny spots laid on carbon layer coated on the surface of insulator are aimed to induce the plasma generation and plasma flow. With advantages of size and weight reduction and straightforward configuration, VCAT system is appropriate to assemble in the microsatellites. In addition, a ‘trigger less’ method with inductor storage power system was used for generating pulsed plasma. This discharge method can significantly reduce input power. The electric thrust is mainly caused by high exhaust velocities of metal ions in plasma flow; undoubtedly, the ion density, ion velocity, and ion charge are important performance parameters. On the other hand, batteries instead of a power supply were engaged to reduce the entire VCAT energy processing unit. The energy required for a single pulse was estimated to be 0.266J by measuring the change between the discharge current and voltage. The ion current was 3.55A measured by an ion detector, and the resulting ion velocity was 23150m/s. Ultimately, according to the theoretical analysis, the VCAT prototype of this study achieved a single impulse of 2.3μN·s, a specific impulse of 2360s, and an overall efficiency of about 10%.
Reference
[1] Lun J. Development of a vacuum arc thruster for nanosatellite propulsion: Stellenbosch: University of Stellenbosch, 2009.
[2] Sabol C, Burns R, McLaughlin CA. Satellite formation flying design and evolution. Journal of spacecraft and rockets. 2001;38(2):270-8.
[3] Esper J, Neeck S, Slavin JA, Wiscombe W, Bauer FH. Nano/micro satellite constellations for earth and space science. Acta Astronautica. 2003;52(9-12):785-92.
[4] Bauer F, Bristow J, Folta D, Hartman K, Quinn D, How J, et al. Satellite formation flying using an innovative autonomous control system (AutoCon) environment. Conference Satellite formation flying using an innovative autonomous control system (AutoCon) environment. p. 3821.
[5] Folta D, Newman L, Gardner T. Foundations of formation flying for mission to planet earth and new millennium. Conference Foundations of formation flying for mission to planet earth and new millennium. p. 3645.
[6] Kolbeck J, Lukas J, Teel G, Keider M, Hanlon E, Pittman J, et al. μCAT Micro-Propulsion Solution for Autonomous Mobile On-Orbit Diagnostic System. 2016.
[7] Kronhaus I, Schilling K, Jayakumar S, Kramer A, Pietzka M, Schein J. Design of the uwe-4 picosatellite orbit control system using vacuum-arc-thrusters. Conference Design of the uwe-4 picosatellite orbit control system using vacuum-arc-thrusters. p. 6-10.
[8] Robinson JB, Richie DJ. Stabilization and Attitude Determination Methods for FalconSAT-3. Journal of Spacecraft and Rockets. 2016:507-19.
[9] Jahn RG. Physics of electric propulsion: Courier Corporation, 2006.
[10] Sutton GP, Biblarz O. Rocket propulsion elements: John Wiley & Sons, 2016.
[11] 李後毅. 先導型電弧火箭系統之自主研發. 成功大學航空太空工程學系學位論文. 2010:1-103.
[12] Shen M-H, Fang H-K, Chao Y-C, Tam SW, Li Y-H. Development of a Micro ECR Ion Thruster for Space Propulsion. 2017.
[13] Choueiri EY. A critical history of electric propulsion: The first 50 years (1906-1956). Journal of Propulsion and Power. 2004;20(2):193-203.
[14] Cybulski RJ, Shellhammer DM, Lovell RR, Domino EJ, Kotnik JT, Cybulski J, et al. Results from SERT I ion rocket flight test. 1965.
[15] Goldman R, Kerslake W, Nieberding W. SERT II-Mission, thruster performance, and in-flight thrust measurements. Journal of Spacecraft and Rockets. 1971;8(3):213-24.
[16] Jordan IJ. Electric propulsion: which one for my spacecraft. Space Systems I course at JHU, Whiting School of Engineering. 2000.
[17] Qi N, Schein J, Binder R, Krishnan M, Anders A, Polk J. Compact vacuum arc micro-thruster for small satellite systems. Conference Compact vacuum arc micro-thruster for small satellite systems. p. 3793.
[18] Tilley D, Spores R. Life extension strategies for Space Shuttle-deployed small satellites using a pulsed plasma thruster. Conference Life extension strategies for Space Shuttle-deployed small satellites using a pulsed plasma thruster. p. 2730.
[19] Schein J, Qi N, Binder R, Krishnan M, Ziemer J, Polk J, et al. Inductive energy storage driven vacuum arc thruster. Review of Scientific Instruments. 2002;73(2):925-7.
[20] Anders A, Brown IG, MacGill RA, Dickinson MR. Triggerless' triggering of vacuum arcs. Journal of Physics D: Applied Physics. 1998;31(5):584.
[21] Boxman RL, Sanders DM, Martin PJ. Handbook of vacuum arc science & technology: fundamentals and applications: William Andrew, 1996.
[22] Lafferty JM. Vacuum arcs: Theory and applications: John Wiley & Sons, 1980.
[23] Miller HC. Electrical discharges in vacuum: 1980-90. IEEE transactions on Electrical Insulation. 1991;26(5):949-1043.
[24] Daalder J. Components of cathode erosion in vacuum arcs. Journal of Physics D: Applied Physics. 1976;9(16):2379.
[25] Jüttner B. Cathode spots of electric arcs. Journal of Physics D: Applied Physics. 2001;34(17):R103.
[26] Takikawa H, Tanoue H. Review of cathodic arc deposition for preparing droplet-free thin films. IEEE Transactions on Plasma Science. 2007;35(4):992-9.
[27] Dethlefsen R. Performance measurements on a pulsed vacuum arc thruster. AIAA Journal. 1968;6(6):1197-9.
[28] Gilmour A, Lockwood DL. Pulsed metallic-plasma generators. Proceedings of the IEEE. 1972;60(8):977-91.
[29] Polk JE, Sekerak MJ, Ziemer JK, Schein J, Qi N, Anders A. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Transactions on Plasma Science. 2008;36(5):2167-79.
[30] Qi N, Gensler S, Prasad RR, Krishnan M, Vizir A. A vacuum arc ion thruster for space propulsion. ALAMEDA APPLIED SCIENCES CORP SAN LEANDRO CA; 1998.
[31] Tang B, Idzkowski L, Au M, Parks D, Krishnan M, Ziemer J. Thrust improvement of the magnetically enhanced vacuum arc thruster (MVAT). Conference Thrust improvement of the magnetically enhanced vacuum arc thruster (MVAT), vol. 304. p. 2005.
[32] Keidar M, Schein J, Wilson K, Gerhan A, Au M, Tang B, et al. Magnetically enhanced vacuum arc thruster. Plasma Sources Science and Technology. 2005;14(4):661.
[33] Zhuang T, Shashurin A, Brieda L, Keidar M. Development of micro-vacuum arc thruster with extended lifetime. Conference Development of micro-vacuum arc thruster with extended lifetime.
[34] Lun J, Law C. Influence of cathode shape on vacuum arc thruster performance and operation. IEEE Transactions on Plasma Science. 2015;43(1):198-208.
[35] Fuchikami S, Nakamoto M, Toyoda K, Cho M. Development of vacuum arc thruster for nano satellite. Conference Development of vacuum arc thruster for nano satellite.
[36] Pietzka M, Kühn-Kauffeldt M, Schein J, Kronhaus I, Schilling K, Mai T, et al. Innovative vacuum arc thruster for cubesat constellations. Conference Innovative vacuum arc thruster for cubesat constellations.
[37] Haque SE, Dinelli CK, Keidar M, Lim T. Quad channel Micro-Cathode Arc Thruster Electric Propulsion subsystem for the Ballistic Reinforced Satellite (BRICSat-P). Conference Quad channel Micro-Cathode Arc Thruster Electric Propulsion subsystem for the Ballistic Reinforced Satellite (BRICSat-P). p. 3909.
[38] Keidar M, Haque S, Zhuang T, Shashurin A, Chiu D, Teel G, et al. Micro-cathode arc thruster for phonesat propulsion. 2013.
[39] Statom T. Vacuum Arc Nano-Thruster Cathode Performance for Nano-Satellites. Conference Vacuum Arc Nano-Thruster Cathode Performance for Nano-Satellites. p. 4291.
[40] Sekerak MJ. Plasma plume characterization of a vacuum arc thruster2005.
[41] Schein J, Gerhan A, Woo R, Au M, Krishnan M. Vacuum arc plasma thrusters with inductive energy storage driver. Google Patents; 2007.
[42] Brown IG. Vacuum arc ion sources. Review of scientific instruments. 1994;65(10):3061-81.
[43] Aheieva K. Development of a Vacuum Arc Thruster for Nanosatellites: 九州工業大学, 2016.
[44] Zhuang T, Shashurin A, Denz T, Keidar M, Vail P, Pancotti A. Performance characteristics of micro-cathode arc thruster. Journal of Propulsion and Power. 2013;30(1):29-34.
[45] Schein J, Gerhan A, Rysanek F, Krishnan M. Vacuum arc thruster for cubesat propulsion. IEPC-0276, 28th IEPC. 2003;100.
[46] Daalder J. Cathode spots and vacuum arcs. Physica B+ C. 1981;104(1-2):91-106.
[47] Tuma D, Chen C, Davies D. Erosion products from the cathode spot region of a copper vacuum arc. Journal of Applied Physics. 1978;49(7):3821-31.
[48] Brown IG, Shiraishi H. Cathode erosion rates in vacuum-arc discharges. IEEE transactions on plasma science. 1990;18(1):170-1.
[49] Kimblin C. Erosion and ionization in the cathode spot regions of vacuum arcs. Journal of Applied Physics. 1973;44(7):3074-81.
[50] Behrisch R. Surface erosion by electrical arcs. Physics of Plasma-Wall Interactions in Controlled Fusion: Springer; 1986. p. 495-513.
[51] Kimblin C. Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs. Journal of Applied Physics. 1974;45(12):5235-44.
[52] Daalder J. Erosion and the origin of charged and neutral species in vacuum arcs. Journal of Physics D: Applied Physics. 1975;8(14):1647.
[53] Anders A. Ion charge state distributions of vacuum arc plasmas: The origin of species. Physical Review E. 1997;55(1):969.
[54] Schein J, Qi N, Binder R, Krishnan M, Ziemer JK, Polk JE, et al. Low mass vacuum arc thruster system for station keeping missions. IEPC paper. 2001:01-228.
[55] 井川秋夫, 西原隆治. 真空装置のメンテナンス リークテストの解説. 表面と真空. 2018;61(8):505-9.
[56] Naz MY, Ghaffar CA, Rehman N, Naseer S, Zakaullah M. Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma. Progress In Electromagnetics Research. 2011;114:113-28.
[57] Marks HS, Beilis II, Boxman RL. Measurement of the Vacuum Arc Plasma Force. IEEE Transactions on Plasma Science. 2009;37(7):1332-7.
[58] Djakov B. A model for the cathode mechanism in low-current metal vapour arcs. Journal of Physics D: Applied Physics. 1983;16(3):343.
[59] Aheieva K, Toyoda K, Cho M. Vacuum Arc Thruster Development and Testing for Micro and Nano Satellites. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN. 2016;14(ists30):Pb_91-Pb_7.
[60] Kronhaus I, Laterza M, Maor Y. Inline screw feeding vacuum arc thruster. Review of Scientific Instruments. 2017;88(4):043505.
[61] Lun J, Dobson R, Steyn W. Performance measurements of a medium-current short-pulsed vacuum arc thruster. Experimental Techniques. 2014;38(3):6-16.