| 研究生: |
張順添 Chang, Shuen-Tian |
|---|---|
| 論文名稱: |
2004年七二水災神木村土石流地聲特性之研究 Study of the Ground Vibrations Generated by Debris Flows in Shenmu Village during the Flood on July 2, 2004 |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 土石流 、七二水災 、地表振動 、土石流觀測站 、頻率 、地聲檢知器 |
| 外文關鍵詞: | debris flow monitoring station, Flood on July 2nd, ground vibrations, geophones, debris flows, frequency |
| 相關次數: | 點閱:241 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
敏督利颱風於民國93年7月2日侵襲台灣,引發「七二水災」造成嚴重的土砂災害,其中在南投縣神木村愛玉子溪即發生數起土石流事件,水土保持局設置於當地之神木土石流觀測站成功地收集到現場即時資料,本文主要將七二水災期間神木土石流觀測站地聲檢知器所測得之地聲(地表振動)時域訊號利用快速傅立葉轉換(FFT)與Gabor Transform進行分析,並討論土石流地聲在時域、頻域之相關特性,所獲得之結果可作為日後該地區訂定警戒基準之參考依據。分析結果顯示土石流地聲之頻率分佈範圍在10~150Hz之間;而由Gabor transform分析結果,發現土石流波湧前端之地聲訊號頻率分佈範圍約在10~30Hz,而波湧通過時地聲訊號之頻率分佈範圍則較為廣泛,至於尾流部分之主要頻率在60Hz左右;由序列式地聲檢知器之地聲訊號求得土石流波湧之平均流速約為13.3 ;此外,比較土石流地聲訊號之振動速率大小,發現裝設於混凝土結構物中之地聲檢知器,易受結構物影響而無法反應出土石流之規模大小。
Typhoon Mindulle attacked Taiwan on July 2nd 2004, and resulted in the "Flood on July 2". On July 2, it caused several debris flows in Aiyuzih creek, Shenmu Village, Sinyi Towship, Nantou County. The debris flow monitoring station in Shenmu set up by the Soil and Water Conservation Bureau, successfully colleted the real-time data. The objective of this study is to analyze and discuss the characteristics of the ground vibrations generated by debris flows that gathered from Shenmu debris flow monitoring station. The result we obtained can be utilized as reference for debris-flow warning thresholds at this region. The time-domain signals of ground vibrations were transformed into the frequency domain by using Fast Fourier Transform and into the Time-Frequency domain by using Gabor transform. The analysis of geophone data shows that the frequency of ground vibrations resulted from a real debris flow ranges from 10 to 150 Hz. By using Gabor Transform to analyze the ground-vibration signals, we find that at the instant before the appearance of peak amplitude in frequency domain, the spectrums concentrated around 30 Hz. When the ground-vibration signals reached the peak value, the distributions of frequency domain fell into a wider range. After the peak, the frequencies fall around 60 Hz. The average velocity of the debris-flow front-surge is figured as 13.3 m/s. In addition, comparison of the geophone data reveals that the geophone installed in the concrete bank revetment can't respond to the magnitude of the debris flow because of the influence of the structure.
1.Arattano, M., “On debris flow front evolution along a torrent,” Phys. Chem. Earth (B), Vol. 25, No.9, pp.733-740, 2000.
2.Arattano, M., “Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors,” The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, pp. 719-730, 2003.
3.Berti, M., R. Genevois, R. LaHusen, A. Simoni, and P. R. Tecca, “Debris Flow Monitoring in the Acquabona Watershed on the Dolomites (Italian Alps),” Phys. Chem. Earth (B), Vol. 25, No.9, pp.707-715, 2000.
4.Bnziger, R. and H. Burch, “Acoustic sensors (hydrophones) as indicators for bed load transport in a mountain torrent,” Hydrology in Mountainous Region, I. Hydrological Measurements, the Water Cycle (Proc. of two Lausanne Symposia), pp. 207-214, IAHS Publ. No. 193, 1990.
5.Friedlander, B. and B. Porat, “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 2, pp. 169-180, 1989.
6.Friedlander, B. and A. Zeira, “Over-sampled Gabor representation for transient signals,” IEEE Trans. Signal Processing, Vol. 43, No. 9, pp. 2088-2094, 1995.
7.Fung, Y. C., “Foundations of solid mechanics,” Englewood Cliffs, N.J.: Prentice-Hall, 1965.
8.Gabor, D., “Theory of communication,” J. Inst. Electr. Eng., Vol. 93, pp. 429-459, 1946.
9.Hadley, K. C., and R. G. LaHusen, “Deployment of an acoustic flow monitor system and examples of its application at Mount Pinatubo, Philippines,” American Geophysical Union 1991 Fall Meeting, abstract, p. 67, 1991.
10.Huang, C. J., Shieh, C. L., and Yin, H. Y., “Laboratory study of the underground sound generated by Debris Flows,” J. Geophys. Res., 109, F01008, doi: 10.1029/2003JF000048, 2004.
11.Hrlimann, M., D. Rickenmann, and C. Graf, “Field and monitoring data of debris-flow events in the Swiss Alps,” Can. Geotech. J., Vol. 40, pp. 161-175, 2003.
12.Ishikawa, Y. and T. Ishizaki, “System for measuring debris flow ground vibrations at Mt. Unzen,” Proc. 3rd PWRI-USGS Workshop on Hydrology, Water Resources and Global Climate Change, Technical Memorandum of PWRI, No. 3373, pp. 31-37, 1995.
13.Itakura, Y., N. Kamei, J. I. Takahama., and Y. Nowa, “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements – Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131, 1997 a.
14.Itakura, Y., Y. Koga, J. I. Takahama, and Y. Nowa, “Acoustic detection sensor for debris flow,” The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, San Francisco, U.S.A., pp. 747-756, 1997 b.
15.Itakura, Y., N. Fujii and T. Sawada, “Basic characteristics of ground vibration sensors for the detection of debris flow,” Phys. Chem. Earth (B), Vol. 25, No. 9, pp.717-720, 2000 a.
16.Itakura, Y., T., Kitajima, K. Endo, and T. Sawada, “A new double-axes accelerometer debris-flow detection system,” The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, pp. 319-324, 2000 b.
17.Johnson, A. M. and J. R. Rodine, “Debris flow,” Slope Instability, pp.257-361, 1984.
18.Love, A. E. H. “A Treatise on the Mathematical Theory of Elasticity,” 4th Ed., Dover Publications, New York, 1944.
19.Marcial S. S., A. A. Melosantos, K. C. Hadley, R. G. LaHusen, and J. N. Marso, “Instrumental lahar monitoring of Mt. Pinatubo, In: Newhall, C.G. and Punongbayan, R.S. (Eds.) ,” Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, pp. 1015-1022, 1993.
20.Okuda, S., K. Okunishi, and H. Suwa, “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130, 1980.
21.Takahashi, T., “Debris flow,” International Association for Hydraulic Research (IAHR) Monograph, Balkema, Rotterdam, 1991.
22.Tugol, N. M. and M. T. Regalado, “Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992,” In: Newhall, C.G. and Punongbayan, R.S. (Eds.), Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, pp. 1023-1032, 1996.
23.Woods, R. D., “Screening of surface waves in soils,” J. Soil Mech. and Foundations Div., Proceedings of ASCE, Vol. 94, pp. 951-979, 1968.
24.尹孝元,「土石流造成地表振動之觀測與研究」,國立成功大學水利及海洋研究所博士論文(英文),2005。
25.台灣省水土保持局與中華水土保持學會,「水土保持手冊」,1992。
26.吳積善、康志成、田連權,「雲南蔣家溝泥石流觀測研究」,科學出版社,北京, 1990。
27.林慶偉、賴文基、黃敏郎、謝正倫,「南投縣信義鄉出水溪土石流之地質控制」,第二屆土石流研討會論文集,第234-240頁,1999。
28.徐明同,「地震學」,黎明出版社,1979。
29.徐明同,「地震工程」,黎明出版社,1983。
30.高橋保(Takahashi, T.),「橫跨土石流潛勢區域之橋樑工程問題」,土木工程防災系列研習會論文集,中央大學土木系橋樑工程研究中心,1997。
31.陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2型無線遙測泥石流警報器的研製」,第二屆全國泥石流學術會議論文集(大陸),第36-41頁,1991。
32.張守陽,「土石流偵測方法之研究」,第二屆海峽兩岸山地災害與環境保育研討會,第109-118頁,2000。
33.黃清哲,「地聲探測器應用於土石流監測方面之研究」,行政院農業委員會水土保持局,2003。
34.黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地聲特性之實驗研究」,中國土木水利工程學刊,第十六卷,第一期,第53-63頁,2004 a。
35.黃清哲、葉智惠、陳潮億、孫坤池、張順添,「以地聲檢知器探測土石流發生之研究(第一年)」,行政院農業委員會水土保持局,2004 b。
36.黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之研究」,中華水土保持學報,第36卷,第一期,第39-53頁,2005。
37.許世盛,「近岸碎波產生氣泡之特性」,國立成功大學水利及海洋研究所碩士論文,2000。
38.劉格非、李欣輯,「地聲探測器之初步研究」,第二屆土石流研討會,第84 –93頁,1999。
39.劉格非、李欣輯,「地聲探測器之應用」,第二屆海峽兩岸山地災害與環境保育學術研討會,第161-169頁,2000。
40.(蘇)B. C. 斯捷潘諾夫著,孟河清譯「泥石流與泥石流體的基本特性及其量測方法」,科學技術文獻出版社重慶分社,1986。