| 研究生: |
黃聖渝 Huang, Sheng-Yu |
|---|---|
| 論文名稱: |
利莫那班和大麻二酚調節古柯鹼相關記憶之效果:大麻素受體第一型以及多巴胺受體第二型之參與 The effects of rimonabant and cannabidiol on cocaine-associated memory: Involvement of the cannabinoid CB1 and dopamine D2 receptors |
| 指導教授: |
胡書榕
Hu, Sherry Shu-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 大麻素受體第一型 、大麻二酚 、古柯鹼場地制約偏好 、學習與記憶 、內側前額葉皮質 、腹側被蓋區 、多巴胺受體 |
| 外文關鍵詞: | cannabinoid CB1 receptor, cocaine-induced conditioned place preference, dopamine D2 receptors, medial prefrontal cortex, dopaminergic projecting pathway, cannabidiol |
| 相關次數: | 點閱:221 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
古柯鹼 (cocaine) 是一個心理興奮劑,具備高度成癮性進而影響成癮者的健康和生活機能,因此關於古柯鹼成癮的治療,一直是臨床上很關心的議題。當古柯鹼成癮者接觸到壓力、古柯鹼相關情境或古柯鹼藥物本身時,容易使既有的古柯鹼相關記憶再次被提取,造成病患強烈的心理渴求以及求藥之行為。因此,我們要如何壓抑甚至抹除病患對古柯鹼的相關記憶,進而避免重複用藥,乃是本實驗的最大目標。我們實驗室過去發現,在雄性小鼠身上系統性給予或是在內側前額葉皮質微量注射利莫那班 (rimonabant),對於低劑量和高劑量古柯鹼引發場地制約偏好記憶 (cocaine-induced conditioned place preference, CPP) 有雙向調節的效果。我們首先探討利莫那班調節古柯鹼記憶是否透過大麻素受體第一型 (cannabinoid receptor type 1, CB1) 來達成。接著,我們探討利莫那班對雄性小鼠之古柯鹼記憶調節效果是否藉由多巴胺受體第一型和第二型 (dopamine receptor D1、D2) 來達成。第三,我們將光遺傳學技術應用在多巴胺合成酵素酪氨酸羥化酶 (tyrosine hydroxylase, TH) 之基因轉殖鼠 (TH-Cre mice) 上,探討利莫那班調節古柯鹼記憶是否透過腹側被蓋區 (ventral tegmental area, VTA) 投射到內側前額葉皮質 (medial prefrontal cortex, mPFC) 之多巴胺神經迴路來達成。最後,由於利莫那班在臨床使用上產生許多副作用,如噁心、焦慮以及增加自殺風險等,因而限制了其臨床應用性,我們進一步研究在臨床上已證實具備抗焦慮和治療癲癇等功能之大麻二酚 (cannabidiol, CBD),是否可以取代利莫那班來調節古柯鹼記憶。我們的研究結果發現,利莫那班對於低劑量古柯鹼 (10 mg/kg) 的場地制約偏好有促進效果,此重複了我們實驗室過去的研究發現,我們進一步發現大麻素受體第一型受體的促進劑WIN 55,212-2 (WIN) 可以阻斷利莫那班的記憶促進效果,我們因此推論大麻素受體第一型CB1至少參與在利莫那班的記憶調節效果。此外,利莫那班損害高劑量古柯鹼 (20 mg/kg) 場地制約偏好之記憶,但當我們單獨施予WIN時,對於高劑量古柯鹼場地制約偏好記憶也產生損害,因此當WIN和利莫那班同時給予時,WIN無法反轉利莫那班之記憶損害效果。我們接著發現,在低高劑量古柯鹼相關記憶上,系統性或在內側前額葉皮質微量注射多巴胺受體第一型D1拮抗劑 (SCH23390, SCH) 或多巴胺受體第二型D2拮抗劑 (sulpiride, Sulp),僅有Sulp會阻斷利莫那班的記憶調節效果,此一結果證實了多巴胺受體第二型D2參與在利莫那班的記憶調節效用。我們接著發現,使用光遺傳學技術興奮TH-Cre小鼠之腹側被蓋區 (VTA) 投射到內側前額葉皮質 (mPFC) 的多巴胺酬償迴路可以有效抑制利莫那班促進低劑量古柯鹼之記憶;然在高劑量古柯鹼記憶之實驗,由於利莫那班在TH-Cre小鼠身上無法複製先前之損害效果,因此興奮此一迴路之效用無法顯現。最後,我們發現,大麻二酚與利莫那班相似,雙向調節了低高劑量古柯鹼場地制約偏好之記憶。我們接著檢視大麻二酚是否也透過大麻素受體第一型CB1來達到其調控效果,結果發現,WIN可以有效抑制大麻二酚在低劑量古柯鹼相關記憶之促進效果;然而,儘管 WIN單獨使用時抑制了高劑量古柯鹼,WIN依然有效回復了大麻二酚的記憶抑制效果,由此可推論大麻素受體第一型CB1參與在大麻二酚之雙向記憶調節效用。總結來說,利莫那班對於古柯鹼相關記憶之調節同時有大麻素受體第一型CB1以及巴胺受體第二型D2之參與,且VTA投射到mPFC之多巴胺神經迴路扮演重要角色,由於大麻二酚亦透過大麻素受體第一型CB1來調節古柯鹼相關記憶,極可能可以在臨床上取代利莫那班的治療效果。
Goals of this study
We aimed to investigate the mechanisms of cannabinoid CB1 receptors and the dopaminergic D1 and D2 receptors underlying the bidirectional effects of rimonabant on cocaine-induced conditioned place preference (CPP).
Methods
We used conditioned place preference to examine the effects of rimonabant on cocaine-associated memory. Stereotaxic surgery was performed for infusing drugs into the medial prefrontal cortex (mPFC). The optogenetic technique was used for investigating the ventral tegmental area (VTA)-to-mPFC dopaminergic projecting pathway.
Results
We found that the rimonabant has bidirectional effects on cocaine-induced CPP) memory in male mice and is mediated by CB1 receptors. Next, rimonabant’s bidirectional effects are mediated by the dopamine D2 receptors. Moreover, by using optogenetic approach in the tyrosine hydroxylase (TH) transgenic mice (TH-Cre mice), we found that activation of the VTA-to-mPFC dopaminergic projecting pathway decreases the facilitatory effect of rimonabant on low-dose cocaine-induced CPP. Finally, systemic administration of the cannabidiol (CBD) also has bidirectional effects on cocaine-induced CPP memory and is mediated by CB1 receptors. These results indicate that CB1 and D2 receptors in the mPFC and VTA-to-mPFC dopaminergic pathway are involved in the rimonabant’s effect on cocaine-associated memory.
參考文獻(References)
Beaulieu, J. M., Espinoza, S., & Gainetdinov, R. R. (2015). Dopamine receptors–IUPHAR review 13. British journal of pharmacology, 172(1), 1-23.
Brodie, M. S., & Dunwiddie, T. V. (1990). Cocaine effects in the ventral tegmental area: evidence for an indirect dopaminergic mechanism of action. Naunyn Schmiedebergs Arch Pharmacol, 342(6), 660-665. doi:10.1007/bf00175709
Cabral, G. A., Ferreira, G. A., & Jamerson, M. J. (2015). Endocannabinoids and the immune system in health and disease. Endocannabinoids, 185-211.
Callén, L., Moreno, E., Barroso-Chinea, P., Moreno-Delgado, D., Cortés, A., Mallol, J., . . . Lluis, C. (2012). Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. Journal of Biological Chemistry, 287(25), 20851-20865.
Chaperon, F., Soubrié, P., Puech, A. J., & Thiébot, M.-H. (1998). Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology, 135(4), 324-332.
Cheer, J. F., Wassum, K. M., Sombers, L. A., Heien, M. L., Ariansen, J. L., Aragona, B. J., . . . Wightman, R. M. (2007). Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. Journal of Neuroscience, 27(4), 791-795.
Chen, B. T., Bowers, M. S., Martin, M., Hopf, F. W., Guillory, A. M., Carelli, R. M., . . . Bonci, A. (2008). Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron, 59(2), 288-297.
Chen, B. T., Yau, H.-J., Hatch, C., Kusumoto-Yoshida, I., Cho, S. L., Hopf, F. W., & Bonci, A. (2013). Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature, 496(7445), 359-362.
Chiu, C. Q., Puente, N., Grandes, P., & Castillo, P. E. (2010). Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. Journal of Neuroscience, 30(21), 7236-7248.
Cossu, G., Ledent, C., Fattore, L., Imperato, A., Böhme, G. A., Parmentier, M., & Fratta, W. (2001). Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behavioural brain research, 118(1), 61-65.
Creese, I., Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238), 481-483.
De Vries, T. J., & Schoffelmeer, A. N. (2005). Cannabinoid CB1 receptors control conditioned drug seeking. Trends in pharmacological sciences, 26(8), 420-426.
De Vries, T. J., Shaham, Y., Homberg, J. R., Crombag, H., Schuurman, K., Dieben, J., . . . Schoffelmeer, A. N. (2001). A cannabinoid mechanism in relapse to cocaine seeking. Nature medicine, 7(10), 1151-1154.
Deutsch, D. G., & Chin, S. A. (1993). Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochemical pharmacology, 46(5), 791-796.
Di Chiara, G. (1999). Drug addiction as dopamine-dependent associative learning disorder. European journal of pharmacology, 375(1-3), 13-30.
Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences, 85(14), 5274-5278.
Englund, A., Morrison, P. D., Nottage, J., Hague, D., Kane, F., Bonaccorso, S., . . . Holt, D. (2013). Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. Journal of psychopharmacology, 27(1), 19-27.
Fattore, L., Martellotta, M. C., Cossu, G., Mascia, M. S., & Fratta, W. (1999). CB1 cannabinoid receptor agonist WIN 55, 212-2 decreases intravenous cocaine self-administration in rats. Behavioural brain research, 104(1-2), 141-146.
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898-1902.
Fischer, B., Kuganesan, S., Gallassi, A., Malcher-Lopes, R., van den Brink, W., & Wood, E. (2015). Addressing the stimulant treatment gap: A call to investigate the therapeutic benefits potential of cannabinoids for crack-cocaine use. International Journal of Drug Policy, 26(12), 1177-1182.
Freitas, H. R., Ferreira, G. d. C., Trevenzoli, I. H., Oliveira, K. d. J., & de Melo Reis, R. A. (2017). Fatty acids, antioxidants and physical activity in brain aging. Nutrients, 9(11), 1263.
Freitas, H. R., Isaac, A. R., Malcher-Lopes, R., Diaz, B. L., Trevenzoli, I. H., & De Melo Reis, R. A. (2018). Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutritional Neuroscience, 21(10), 695-714. Retrieved from doi:10.1080/1028415X.2017.1347373
Fride, E., & Mechoulam, R. (1993). Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. European journal of pharmacology, 231(2), 313-314.
Gawin, F. H. (1991). Cocaine addiction: psychology and neurophysiology. Science, 251(5001), 1580-1586.
Gerdeman, G. L., Schechter, J. B., & French, E. D. (2008). Context-specific reversal of cocaine sensitization by the CB 1 cannabinoid receptor antagonist Rimonabant. Neuropsychopharmacology, 33(11), 2747-2759.
Girault, J.-A., & Greengard, P. (2004). The neurobiology of dopamine signaling. Archives of neurology, 61(5), 641-644.
Giuffrida, A., Parsons, L., Kerr, T., De Fonseca, F. R., Navarro, M., & Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature neuroscience, 2(4), 358-363.
Goeders, N. E., Dworkin, S. I., & Smith, J. E. (1986). Neuropharmacological assessment of cocaine self-administration into the medial prefrontal cortex. Pharmacology Biochemistry and Behavior, 24(5), 1429-1440.
Goeders, N. E., & Smith, J. (1986). Reinforcing properties of cocaine in the medial prefrontal cortex: primary action on presynaptic dopaminergic terminals. Pharmacology Biochemistry and Behavior, 25(1), 191-199.
González, S., Cascio, M. G., Fernández-Ruiz, J., Fezza, F., Di Marzo, V., & Ramos, J. A. (2002). Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain research, 954(1), 73-81.
Hansen, H. S., Lauritzen, L., Moesgaard, B., Strand, A. M., & Hansen, H. H. (1998). Formation of N-acyl-phosphatidylethanolamines and N-acylethanolamines: Proposed role in neurotoxicity. Biochemical pharmacology, 55(6), 719-725.
Howlett, A. C., Reggio, P. H., Childers, S. R., Hampson, R. E., Ulloa, N. M., & Deutsch, D. G. (2011). Endocannabinoid tone versus constitutive activity of cannabinoid receptors. British journal of pharmacology, 163(7), 1329-1343.
Hu, S. S.-J., Liu, Y.-W., & Yu, L. (2015). Medial prefrontal cannabinoid CB 1 receptors modulate consolidation and extinction of cocaine-associated memory in mice. Psychopharmacology, 232(10), 1803-1815.
Hurd, Y. L. (2017). Cannabidiol: swinging the marijuana pendulum from ‘weed’to medication to treat the opioid epidemic. Trends in Neurosciences, 40(3), 124-127.
Hurd, Y. L., & Ungerstedt, U. (1989). Cocaine: an in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse, 3(1), 48-54.
Hurd, Y. L., Yoon, M., Manini, A. F., Hernandez, S., Olmedo, R., Ostman, M., & Jutras-Aswad, D. (2015). Early phase in the development of cannabidiol as a treatment for addiction: opioid relapse takes initial center stage. Neurotherapeutics, 12(4), 807-815.
Hurley, M., & Jenner, P. (2006). What has been learnt from study of dopamine receptors in Parkinson's disease? Pharmacology & therapeutics, 111(3), 715-728.
Iseger, T. A., & Bossong, M. G. (2015). A systematic review of the antipsychotic properties of cannabidiol in humans. Schizophrenia research, 162(1-3), 153-161.
Jones, E. G. (1984). Laminar distribution of cortical efferent cells. Cerebral cortex, 521-552.
Katz, J. L., Kopajtic, T. A., Myers, K. A., Mitkus, R. J., & Chider, M. (1999). Behavioral effects of cocaine: interactions with D1 dopaminergic antagonists and agonists in mice and squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics, 291(1), 265-279.
Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., & Roeper, J. (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773.
Lammel, S., Ion, D. I., Roeper, J., & Malenka, R. C. (2011). Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70(5), 855-862.
Laprairie, R., Bagher, A., Kelly, M., & Denovan‐Wright, E. (2015). Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. British journal of pharmacology, 172(20), 4790-4805.
Liu, K., & Steketee, J. D. (2011). Repeated exposure to cocaine alters medial prefrontal cortex dopamine D2‐like receptor modulation of glutamate and dopamine neurotransmission within the mesocorticolimbic system. Journal of neurochemistry, 119(2), 332-341.
Liu, Y.-W. (2014). 大麻素一號受體拮抗劑利莫那班對於古柯鹼相關記憶的穩固化, 再穩固化以及消除歷程之影響. 成功大學心理學系認知科學碩士班學位論文, 1-54.
Martinez, D., Narendran, R., Foltin, R. W., Slifstein, M., Hwang, D.-R., Broft, A., . . . Kleber, H. D. (2007). Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. American Journal of Psychiatry, 164(4), 622-629.
Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., . . . Compton, D. R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical pharmacology, 50(1), 83-90.
Meyer, H. S., Schwarz, D., Wimmer, V. C., Schmitt, A. C., Kerr, J. N., Sakmann, B., & Helmstaedter, M. (2011). Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A. Proceedings of the National Academy of Sciences, 108(40), 16807-16812.
Mitchell, P. B., & Morris, M. J. (2007). Depression and anxiety with rimonabant.
Murray, R. M., Englund, A., Abi-Dargham, A., Lewis, D. A., Di Forti, M., Davies, C., . . . D'Souza, D. C. (2017). Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology, 124, 89-104.
Nakanishi, K., Goto, T., & Itô, S. (2013). Natural Products Chemistry: Volume 1 (Vol. 1): Academic press.
Parker, J. G., Beutler, L. R., & Palmiter, R. D. (2011). The contribution of NMDA receptor signaling in the corticobasal ganglia reward network to appetitive Pavlovian learning. Journal of Neuroscience, 31(31), 11362-11369.
Pertwee, R. G. (2000). Neuropharmacology and therapeutic potential of cannabinoids. Addiction Biology, 5(1), 37-46.
Pertwee, R. G. (2001). Cannabinoid receptors and pain. Progress in neurobiology, 63(5), 569-611.
Pertwee, R. G. (2005). Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sciences, 76(12), 1307-1324.
Pertwee, R. G. (2006). Cannabinoid pharmacology: the first 66 years. British Journal of pharmacology, 147(S1), S163-S171.
Pertwee, R. G., Griffin, G., Lainton, J. A., & Huffman, J. W. (1995). Pharmacological characterization of three novel cannabinoid receptor agonists in the mouse isolated vas deferens. European Journal of pharmacology, 284(3), 241-247.
Pertwee, R. G., Ross, R. A., Craib, S. J., & Thomas, A. (2002). (−)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. European Journal of pharmacology, 456(1-3), 99-106.
Pi-Sunyer, F. X., Aronne, L. J., Heshmati, H. M., Devin, J., Rosenstock, J., & RIO-North America Study Group, f. (2006). Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA, 295(7), 761-775.
Pruitt, D. L., Bolanos, C. A., & McDougall, S. A. (1995). Effects of dopamine D1 and D2 receptor antagonists on cocaine-induced place preference conditioning in preweanling rats. European journal of pharmacology, 283(1-3), 125-131.
Rezayof, A., & Hashemizadeh, S. (2016). Critical Role of Cannabinoid CB1 Receptors in Nicotine Reward and Addiction. In Neuropathology of Drug Addictions and Substance Misuse (pp. 158-167): Elsevier.
Rondou, P., Haegeman, G., & Van Craenenbroeck, K. (2010). The dopamine D4 receptor: biochemical and signalling properties. Cellular and molecular life sciences, 67(12), 1971-1986.
Russo, E., & Guy, G. W. (2006). A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Medical hypotheses, 66(2), 234-246.
Sanchez, C., Bailie, T., Wu, W.-R., Li, N., & Sorg, B. (2003). Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress-and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience, 119(2), 497-505.
Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241-263.
Showalter, V. M., Compton, D. R., Martin, B. R., & Abood, M. E. (1996). Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. Journal of Pharmacology and Experimental Therapeutics, 278(3), 989-999.
Smiley, J. F., Levey, A. I., Ciliax, B. J., & Goldman-Rakic, P. S. (1994). D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proceedings of the National Academy of Sciences, 91(12), 5720-5724.
Sorg, B. A., Davidson, D. L., Kalivas, P. W., & Prasad, B. M. (1997). Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. Journal of Pharmacology and Experimental Therapeutics, 281(1), 54-61.
Steketee, J. D. (2003). Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Research Reviews, 41(2-3), 203-228.
Steketee, J. D., & Walsh, T. J. (2005). Repeated injections of sulpiride into the medial prefrontal cortex induces sensitization to cocaine in rats. Psychopharmacology, 179(4), 753-760.
Stewart, J. (2000). Pathways to relapse: the neurobiology of drug-and stress-induced relapse to drug-taking. Journal of Psychiatry and Neuroscience, 25(2), 125.
Thomas, A., Baillie, G., Phillips, A., Razdan, R., Ross, R. A., & Pertwee, R. G. (2007). Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. British journal of pharmacology, 150(5), 613-623.
Thomas, B. F., & Elsohly, M. (2015). The analytical chemistry of cannabis: Quality assessment, assurance, and regulation of medicinal marijuana and cannabinoid preparations: Elsevier.
Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral cortex, 13(1), 5-14.
Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., De Lecea, L., & Deisseroth, K. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324(5930), 1080-1084.
Van Aerde, K. I., & Feldmeyer, D. (2015). Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. Cerebral cortex, 25(3), 788-805.
Van den Oever, M. C., Spijker, S., Smit, A. B., & De Vries, T. J. (2010). Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neuroscience & Biobehavioral Reviews, 35(2), 276-284.
Vertes, R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience, 142(1), 1-20.
Vincent, S. L., Khan, Y., & Benes, F. M. (1993). Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Journal of Neuroscience, 13(6), 2551-2564.
Vincent, S. L., Khan, Y., & Benes, F. M. (1995). Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse, 19(2), 112-120.
Vlachou, S., Nomikos, G. G., & Panagis, G. (2003). WIN 55,212-2 decreases the reinforcing actions of cocaine through CB1 cannabinoid receptor stimulation. Behavioural brain research, 141(2), 215-222.
Volkow, N. D., Fowler, J. S., Wang, G.-J., & Goldstein, R. Z. (2002). Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiology of learning and memory, 78(3), 610-624.
Watanabe, K., et al. . (1996). Inhibition of anandamide amidase activity in mouse brain microsomes by cannabinoids. Biological and Pharmaceutical Bulletin, 19(8), 1109-1111.
Williams, G., & Castner, S. (2006). Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience, 139(1), 263-276.
Xi, Z.-X., Gilbert, J. G., Peng, X.-Q., Pak, A. C., Li, X., & Gardner, E. L. (2006). Cannabinoid CB1 receptor antagonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. Journal of Neuroscience, 26(33), 8531-8536.
Zhang, S., Qi, J., Li, X., Wang, H.-L., Britt, J. P., Hoffman, A. F., . . . Morales, M. (2015). Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nature neuroscience, 18(3), 386-392.
Zuardi, A. W., Shirakawa, I., Finkelfarb, E., & Karniol, I. (1982). Action of cannabidiol on the anxiety and other effects produced by Δ 9-THC in normal subjects. Psychopharmacology, 76(3), 245-250.
Liu, Y.-W. (2014). 大麻素一號受體拮抗劑利莫那班對於古柯鹼相關記憶的穩固化, 再穩固化以及消除歷程之影響. 成功大學心理學系認知科學碩士班學位論文, 1-54.
校內:2026-08-18公開