| 研究生: |
蔡育丞 Tsai, Yu-Cheng |
|---|---|
| 論文名稱: |
製備以穀胱甘肽修飾乳鐵蛋白之奈米藥物載體應用於帕金森氏症治療 Synthesis of Glutathione-modified Protein-Based Nanocarriers for Treatment of Parkinson’s Disease |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 帕金森氏症 、乳鐵蛋白 、穀胱甘肽 、多巴胺能神經元 、奈米藥物載體 、2-羥丙基-β-環糊精 、苦橄欖素 |
| 外文關鍵詞: | Parkinson’s disease, lactoferrin, glutathione, dopaminergic neuron, oleuropein, 2-hydroxypropyl-β-cyclodextrin, blood-brain barrier |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於合成出穩定、粒徑小、無毒性、且對帕金森氏症具有藥物活性之奈米藥物載體粒子,將血腦屏障穿梭胜肽—穀胱甘肽接枝修飾於同樣能夠通過血腦屏障之乳鐵蛋白胺基酸序列上,並利用肝素高負電密度與能和乳鐵蛋白結合之特性,將藥物吸附後與乳鐵蛋白結合形成同時具有藥物活性和血腦屏障穿梭官能基之藥物奈米粒子,整個系統未用到任何有危害性之溶劑,把毒性降至最低,並探討在不同藥物(特別是幾種新穎之藥物後選例如:苦橄欖素(Oleuropein)、2-羥丙基-β-環糊精(2-hydroxypropyl-β-cyclodextrin)等)、不同組成比例與有無穀胱甘肽修飾等等各種的條件下,評估此藥物載體系統之可行性。
結果顯示若將條件控制得宜,此系統之粒子大小均可介於80-170nm左右,雖然不同藥物組合有不同的粒徑表現,但對生物體都幾乎沒有任何毒性,也能夠被細胞攝取至細胞質甚至細胞核的位置進行藥物釋放。在有穀胱甘肽修飾的粒子中,結構會較鬆散,但也因此提升了藥物釋放的效率,並且能夠顯著提升粒子被細胞攝取的效率,可做為未來腦部治療相關的藥物載體開發。
In this study, we developed a protein-based drug carrier, where the nanoparticles(NPs) are non-toxic and possess medicinal activity against Parkinson's disease (PD). Lactoferrin (LF) modified by glutathione (GSH) serve as our NPs skeleton not only provide blood-brain barrier (BBB) shuttle ability, anti-oxidation activity but also enhance the cellular uptake efficiency. After encapsulated with dopamine (Dopa), levodopa (L-Dopa), oleuropein (Oleu), 2-hydroxypropyl-β-cyclodextrin (HPBCD) and rhodamine 6G (Rd), found heparin (Hep) serves a crucial role in crosslinking between LF, LF(GSH) and drugs by electrostatic force and natural binding force, especially Dopa and L-Dopa, making the structure more firmly, possessing higher DLE and sustained drug-release ability. Properties were confirmed by 1H NMR and DLS, data shows that we can acquire the NPs which size between approximately 80 to 170 nm under certain condition. TEM images and UV-Vis spectrums claim that GSH will in certain level affect the structural compactness of NPs, but can increase both release and cellular uptake efficiency, also provide one more target for acceptor (GSH transporter) on BBB to recognize. Investigation of ELISA and confocal microscopy suggested that NPs show low toxicities for both SH-SY5Y cell line and mid-brain organoids. The ability to transport to nuclei and successfully rescue the ratio of dopaminergic neuron in the PD model organoids is another advantage. Furthermore, L-Dopa and HPBCD can form an “inclusion complex” during preparation which significantly improves the DLE and DLC of HPBCD. To sum up, our NPs system has good advantage and potential in the field of brain disease treatment and will conduct animal experiments in the future.
1. Lees, A. J., Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday. Movement disorders : official journal of the Movement Disorder Society 2007, 22 Suppl 17, S327-34.
2. Parkinson, J., An essay on the shaking palsy. 1817. The Journal of neuropsychiatry and clinical neurosciences 2002, 14 (2), 223-36; discussion 222.
3. Fahn, S., The history of dopamine and levodopa in the treatment of Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 2008, 23 Suppl 3, S497-508.
4. Schulz-Schaeffer, W. J., The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta neuropathologica 2010, 120 (2), 131-43.
5. Sveinbjornsdottir, S., The clinical symptoms of Parkinson's disease. Journal of neurochemistry 2016, 139 Suppl 1, 318-324.
6. Jin, L.; Bai, X.; Luan, N.; Yao, H.; Zhang, Z.; Liu, W.; Chen, Y.; Yan, X.; Rong, M.; Lai, R.; Lu, Q., A Designed Tryptophan- and Lysine/Arginine-Rich Antimicrobial Peptide with Therapeutic Potential for Clinical Antibiotic-Resistant Candida albicans Vaginitis. J Med Chem 2016, 59 (5), 1791-9.
7. Kuo, Y.-C.; Rajesh, R., Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. Journal of the Taiwan Institute of Chemical Engineers 2018, 87, 15-25.
8. Davie, C. A., A review of Parkinson's disease. British medical bulletin 2008, 86, 109-27.
9. Lesage, S.; Brice, A., Parkinson's disease: from monogenic forms to genetic susceptibility factors. Human molecular genetics 2009, 18 (R1), R48-59.
10. Wakabayashi, K.; Hayashi, S.; Kakita, A.; Yamada, M.; Toyoshima, Y.; Yoshimoto, M.; Takahashi, H., Accumulation of alpha-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta neuropathologica 1998, 96 (5), 445-52.
11. Chu, Y.; Dodiya, H.; Aebischer, P.; Olanow, C. W.; Kordower, J. H., Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiology of disease 2009, 35 (3), 385-98.
12. Qiao, L.; Hamamichi, S.; Caldwell, K. A.; Caldwell, G. A.; Yacoubian, T. A.; Wilson, S.; Xie, Z. L.; Speake, L. D.; Parks, R.; Crabtree, D.; Liang, Q.; Crimmins, S.; Schneider, L.; Uchiyama, Y.; Iwatsubo, T.; Zhou, Y.; Peng, L.; Lu, Y.; Standaert, D. G.; Walls, K. C.; Shacka, J. J.; Roth, K. A.; Zhang, J., Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Molecular brain 2008, 1, 17.
13. Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C. W.; Merchant, K. M.; Bezard, E.; Petsko, G. A.; Meissner, W. G., Targeting alpha-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. The Lancet. Neurology 2015, 14 (8), 855-866.
14. Armulik, A.; Genove, G.; Mae, M.; Nisancioglu, M. H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B. R.; Betsholtz, C., Pericytes regulate the blood-brain barrier. Nature 2010, 468 (7323), 557-61.
15. Abbott, N. J.; Ronnback, L.; Hansson, E., Astrocyte-endothelial interactions at the blood-brain barrier. Nature reviews. Neuroscience 2006, 7 (1), 41-53.
16. Kacem, K.; Lacombe, P.; Seylaz, J.; Bonvento, G., Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 1998, 23 (1), 1-10.
17. Tontsch, U.; Bauer, H. C., Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain research 1991, 539 (2), 247-53.
18. Gonzalez-Mariscal, L.; Betanzos, A.; Nava, P.; Jaramillo, B. E., Tight junction proteins. Progress in biophysics and molecular biology 2003, 81 (1), 1-44.
19. Wilhelm, I.; Fazakas, C.; Krizbai, I. A., In vitro models of the blood-brain barrier. Acta neurobiologiae experimentalis 2011, 71 (1), 113-28.
20. Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P. O., The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et biophysica acta 2009, 1788 (4), 842-57.
21. Oller-Salvia, B.; Sanchez-Navarro, M.; Giralt, E.; Teixido, M., Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chemical Society reviews 2016, 45 (17), 4690-707.
22. Xu, Y.; Du, Y., Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 2003, 250 (1), 215-226.
23. Malam, Y.; Loizidou, M.; Seifalian, A. M., Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences 2009, 30 (11), 592-599.
24. Riederer, P.; Sofic, E.; Rausch, W. D.; Schmidt, B.; Reynolds, G. P.; Jellinger, K.; Youdim, M. B., Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of neurochemistry 1989, 52 (2), 515-20.
25. Eiamphungporn, W.; Yainoy, S.; Prachayasittikul, V., Angiopep-2-Mediated Delivery of Human Manganese Superoxide Dismutase in Brain Endothelial Cells and its Protective Effect Against Oxidative Stress. 2015; Vol. 21.
26. Sorrentino, N. C.; D'Orsi, L.; Sambri, I.; Nusco, E.; Monaco, C.; Spampanato, C.; Polishchuk, E.; Saccone, P.; De Leonibus, E.; Ballabio, A.; Fraldi, A., A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO molecular medicine 2013, 5 (5), 675-690.
27. Bockenhoff, A.; Cramer, S.; Wolte, P.; Knieling, S.; Wohlenberg, C.; Gieselmann, V.; Galla, H. J.; Matzner, U., Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. The Journal of neuroscience : the official journal of the Society for Neuroscience 2014, 34 (9), 3122-9.
28. Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; Lopez-Iglesias, C.; Teixido, M.; Kogan, M. J.; Giralt, E., Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012, 33 (29), 7194-205.
29. Staquicini, F. I.; Ozawa, M. G.; Moya, C. A.; Driessen, W. H.; Barbu, E. M.; Nishimori, H.; Soghomonyan, S.; Flores, L. G., 2nd; Liang, X.; Paolillo, V.; Alauddin, M. M.; Basilion, J. P.; Furnari, F. B.; Bogler, O.; Lang, F. F.; Aldape, K. D.; Fuller, G. N.; Hook, M.; Gelovani, J. G.; Sidman, R. L.; Cavenee, W. K.; Pasqualini, R.; Arap, W., Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. The Journal of clinical investigation 2011, 121 (1), 161-73.
30. Liu, Y.; Guo, Y.; An, S.; Kuang, Y.; He, X.; Ma, H.; Li, J.; Lu, J.; Zhang, N.; Jiang, C., Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease. PloS one 2013, 8 (5), e62905.
31. Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J., B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjugate chemistry 2013, 24 (6), 997-1007.
32. Wang, Z. H.; Wang, Z. Y.; Sun, C. S.; Wang, C. Y.; Jiang, T. Y.; Wang, S. L., Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 2010, 31 (5), 908-15.
33. Kurakhmaeva, K. B.; Djindjikhashvili, I. A.; Petrov, V. E.; Balabanyan, V. U.; Voronina, T. A.; Trofimov, S. S.; Kreuter, J.; Gelperina, S.; Begley, D.; Alyautdin, R. N., Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. Journal of drug targeting 2009, 17 (8), 564-74.
34. Saraiva, C.; Praca, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L., Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. Journal of controlled release : official journal of the Controlled Release Society 2016, 235, 34-47.
35. Di Stefano, A.; Carafa, M.; Sozio, P.; Pinnen, F.; Braghiroli, D.; Orlando, G.; Cannazza, G.; Ricciutelli, M.; Marianecci, C.; Santucci, E., Evaluation of rat striatal l-dopa and DA concentration after intraperitoneal administration of l-dopa prodrugs in liposomal formulations. Journal of Controlled Release 2004, 99 (2), 293-300.
36. Wang, Y.; Xu, H.; Fu, Q.; Ma, R.; Xiang, J., Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. Journal of the Neurological Sciences 2011, 304 (1), 29-34.
37. Creighton, T. E., Proteins: structures and molecular properties. 1993.
38. Schulz, G. E., Schirmer, R.H., Principles of Protein Structure.
39. Russell, P. J., IGenetics: A Molecular Approach. Benjamin Cummings: 2010.
40. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
41. Khramtsov, V. V.; Gillies, J. R., Janus-Faced Tumor Microenvironment and Redox. Antioxidants & Redox Signaling 2014, 21 (5), 723-729.
42. Estrela, J. M.; Ortega, A.; Obrador, E., Glutathione in Cancer Biology and Therapy. Critical Reviews in Clinical Laboratory Sciences 2006, 43 (2), 143-181.
43. Chen, Y. F.; Chang, C. H.; Lin, C. Y.; Lin, L. F.; Yeh, M. L.; Jan, J. S., Disulfide-cross-linked PEG-block-polypeptide nanoparticles with high drug loading content as glutathione-triggered anticancer drug nanocarriers. Colloids and Surfaces B-Biointerfaces 2018, 165, 172-181.
44. Ballatori, N.; Krance, S. M.; Marchan, R.; Hammond, C. L., Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Molecular aspects of medicine 2009, 30 (1-2), 13-28.
45. Kovacs-Nolan, J.; Rupa, P.; Matsui, T.; Tanaka, M.; Konishi, T.; Sauchi, Y.; Sato, K.; Ono, S.; Mine, Y., In vitro and ex vivo uptake of glutathione (GSH) across the intestinal epithelium and fate of oral GSH after in vivo supplementation. Journal of agricultural and food chemistry 2014, 62 (39), 9499-506.
46. Mischley, L. K.; Lau, R. C.; Shankland, E. G.; Wilbur, T. K.; Padowski, J. M., Phase IIb Study of Intranasal Glutathione in Parkinson's Disease. Journal of Parkinson's disease 2017, 7 (2), 289-299.
47. Gaillard, P. J.; Appeldoorn, C. C.; Rip, J.; Dorland, R.; van der Pol, S. M.; Kooij, G.; de Vries, H. E.; Reijerkerk, A., Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. Journal of controlled release : official journal of the Controlled Release Society 2012, 164 (3), 364-9.
48. Xu, B.; Yang, Y. J.; Han, Y. L.; Lu, S. Z.; Li, B.; Liu, Q.; Zhu, G. Y.; Cui, J. Y.; Li, L.; Zhao, Y. L.; Kirtane, A. J., Validation of residual SYNTAX score with second-generation drug-eluting stents: one-year results from the prospective multicentre SEEDS study. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2014, 10 (1), 65-73.
49. Mdzinarishvili, A.; Sutariya, V.; Talasila, P. K.; Geldenhuys, W. J.; Sadana, P., Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug delivery and translational research 2013, 3 (4), 309-17.
50. Lee, D. H.; Rotger, C.; Appeldoorn, C. C.; Reijerkerk, A.; Gladdines, W.; Gaillard, P. J.; Linker, R. A., Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. Journal of neuroimmunology 2014, 274 (1-2), 96-101.
51. Geldenhuys, W.; Mbimba, T.; Bui, T.; Harrison, K.; Sutariya, V., Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. Journal of drug targeting 2011, 19 (9), 837-45.
52. Hu, Y.; Gaillard, P. J.; Rip, J.; de Lange, E. C. M.; Hammarlund-Udenaes, M., In Vivo Quantitative Understanding of PEGylated Liposome's Influence on Brain Delivery of Diphenhydramine. Molecular pharmaceutics 2018, 15 (12), 5493-5500.
53. Rotman, M.; Welling, M. M.; Bunschoten, A.; de Backer, M. E.; Rip, J.; Nabuurs, R. J.; Gaillard, P. J.; van Buchem, M. A.; van der Maarel, S. M.; van der Weerd, L., Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease. Journal of controlled release : official journal of the Controlled Release Society 2015, 203, 40-50.
54. Masson, P. L.; Heremans, J. F.; Dive, C., AN IRON-BINDING PROTEIN COMMON TO MANY EXTERNAL SECRETIONS. Clinica Chimica Acta 1966, 14 (6), 735-&.
55. Harrington, J. P., Spectroscopic analysis of the unfolding of transition metal-ion complexes of human lactoferrin and transferrin. International Journal of Biochemistry 1992, 24 (2), 275-280.
56. Harrington, J. P.; Stuart, J.; Jones, A., Unfolding of iron and copper complexes of human lactoferrin and transferrin. International Journal of Biochemistry 1987, 19 (10), 1001-1008.
57. Hennart, P. F.; Brasseur, D. J.; Delogne-Desnoeck, J. B.; Dramaix, M. M.; Robyn, C. E., Lysozyme, lactoferrin, and secretory immunoglobulin A content in breast milk: influence of duration of lactation, nutrition status, prolactin status, and parity of mother. The American journal of clinical nutrition 1991, 53 (1), 32-9.
58. Pierce, A.; Colavizza, D.; Benaissa, M.; Maes, P.; Tartar, A.; Montreuil, J.; Spik, G., Molecular cloning and sequence analysis of bovine lactoferrin. 2005; Vol. 196, p 177-184.
59. Steijns, J.; C. M. van Hooijdonk, A., Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. 2000; Vol. 84 Suppl 1, p S11-7.
60. Baker, E.; Baker, H. M.; Kidd, R., Lactoferrin and transferrin: Functional variations on a common structural framework. 2002; Vol. 80.
61. Orsi, N., The antimicrobial activity of lactoferrin: current status and perspectives. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 2004, 17 (3), 189-96.
62. Jenssen, H.; Hancock, R. E., Antimicrobial properties of lactoferrin. Biochimie 2009, 91 (1), 19-29.
63. Weinberg, E., Human lactoferrin: A novel therapeutic with broad spectrum potential. 2001; Vol. 53, p 1303-10.
64. Vogel, H. J., Lactoferrin, a bird’s eye view. Biochemistry and Cell Biology 2012, 90 (3), 233-244.
65. Chuang, Y. J.; Swanson, R.; Raja, S. M.; Olson, S. T., Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive center loop sequence. Evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. The Journal of biological chemistry 2001, 276 (18), 14961-71.
66. Oduah, E. I.; Linhardt, R. J.; Sharfstein, S. T., Heparin: Past, Present, and Future. Pharmaceuticals (Basel, Switzerland) 2016, 9 (3), 38.
67. Alquwaizani, M.; Buckley, L.; Adams, C.; Fanikos, J., Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Current emergency and hospital medicine reports 2013, 1 (2), 83-97.
68. Harter, K.; Levine, M.; Henderson, S. O., Anticoagulation drug therapy: a review. The western journal of emergency medicine 2015, 16 (1), 11-17.
69. Zou, S.; Magura, C. E.; Hurley, W. L., Heparin-binding properties of lactoferrin and lysozyme. Comparative biochemistry and physiology. B, Comparative biochemistry 1992, 103 (4), 889-95.
70. van Berkel, P. H.; Geerts, M. E.; van Veen, H. A.; Mericskay, M.; de Boer, H. A.; Nuijens, J. H., N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. The Biochemical journal 1997, 328 ( Pt 1), 145-51.
71. Pejler, G., Lactoferrin regulates the activity of heparin proteoglycan-bound mast cell chymase: characterization of the binding of heparin to lactoferrin. The Biochemical journal 1996, 320 ( Pt 3) (Pt 3), 897-903.
72. Shimazaki, K.; Tazume, T.; Uji, K.; Tanaka, M.; Kumura, H.; Mikawa, K.; Shimo-Oka, T., Properties of a heparin-binding peptide derived from bovine lactoferrin. J Dairy Sci 1998, 81 (11), 2841-9.
73. Di Biase, A. M.; Pietrantoni, A.; Tinari, A.; Siciliano, R.; Valenti, P.; Antonini, G.; Seganti, L.; Superti, F., Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. Journal of medical virology 2003, 69 (4), 495-502.
74. Shimazaki, K.; Tazume, T.; Uji, K.; Tanaka, M.; Kumura, H.; Mikawa, K.; Shimo-oka, T., Properties of a Heparin-binding Peptide Derived from Bovine Lactoferrin. Journal of Dairy Science 1998, 81 (11), 2841-2849.
75. Yeragani, V. K.; Tancer, M.; Chokka, P.; Baker, G. B., Arvid Carlsson, and the story of dopamine. Indian journal of psychiatry 2010, 52 (1), 87-88.
76. Dunlop, B. W.; Nemeroff, C. B., The Role of Dopamine in the Pathophysiology of Depression. Archives of General Psychiatry 2007, 64 (3), 327-337.
77. Stowe, R. L.; Ives, N. J.; Clarke, C.; van Hilten, J.; Ferreira, J.; Hawker, R. J.; Shah, L.; Wheatley, K.; Gray, R., Dopamine agonist therapy in early Parkinson's disease. The Cochrane database of systematic reviews 2008, (2), Cd006564.
78. Dahlstroem, A.; Fuxe, K., Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta physiologica Scandinavica. Supplementum 1964, Suppl 232:1-55.
79. Wise, R. A., Dopamine, learning and motivation. Nature Reviews Neuroscience 2004, 5 (6), 483-494.
80. Beaulieu, J. M.; Gainetdinov, R. R., The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological reviews 2011, 63 (1), 182-217.
81. Delaville, C.; Deurwaerdère, P. D.; Benazzouz, A., Noradrenaline and Parkinson's disease. Frontiers in systems neuroscience 2011, 5, 31-31.
82. Birkmayer, W.; Hornykiewicz, O., [The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia]. Wiener klinische Wochenschrift 1961, 73, 787-8.
83. McDowell, F. H.; Lee, J. E., L-DOPA in Parkinson's Disease. California medicine 1970, 113 (4), 44-46.
84. Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F., Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clinical interventions in aging 2010, 5, 229-238.
85. Ceravolo, R.; Frosini, D.; Rossi, C.; Bonuccelli, U., Impulse control disorders in Parkinson's disease: definition, epidemiology, risk factors, neurobiology and management. Parkinsonism & related disorders 2009, 15 Suppl 4, S111-5.
86. Broadley, K. J., The vascular effects of trace amines and amphetamines. Pharmacology & therapeutics 2010, 125 (3), 363-75.
87. Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C., Effects of the olive-derived polyphenol oleuropein on human health. International journal of molecular sciences 2014, 15 (10), 18508-18524.
88. Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A. M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G., Phenolic Molecules in Virgin Olive Oils: a Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12 (8), 1679-1719.
89. Rigacci, S.; Stefani, M., Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. International journal of molecular sciences 2016, 17 (6).
90. Katsiki, M.; Chondrogianni, N.; Chinou, I.; Rivett, A. J.; Gonos, E. S., The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation research 2007, 10 (2), 157-72.
91. Huang, L.; Chen, C. H., Proteasome regulators: activators and inhibitors. Current medicinal chemistry 2009, 16 (8), 931-9.
92. Huang, Z. N.; Chung, H. M.; Fang, S. C.; Her, L. S., Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects. International journal of biological sciences 2017, 13 (11), 1420-1437.
93. Yu, T.; Fox, R. J.; Burwell, L. S.; Yoon, Y., Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. Journal of cell science 2005, 118 (Pt 18), 4141-51.
94. Jin, Y. N.; Yu, Y. V.; Gundemir, S.; Jo, C.; Cui, M.; Tieu, K.; Johnson, G. V., Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PloS one 2013, 8 (3), e57932.
95. Hall, I. C., The Anaerobic Bacteria and Their Activities in Nature and Disease—A Subject Bilbliography. American Journal of Public Health and the Nations Health 1942, 32 (3), 323-323.
96. DePinto, J. A.; Campbell, L. L., Purification and properties of the amylase of Bacillus macerans. Biochemistry 1968, 7 (1), 114-120.
97. Freudenberg, K.; Rapp, W., Zur Kenntnis der Stärke und der Schardinger-Dextrine. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1936, 69 (9), 2041-2045.
98. Tanaka, Y.; Yamada, Y.; Ishitsuka, Y.; Matsuo, M.; Shiraishi, K.; Wada, K.; Uchio, Y.; Kondo, Y.; Takeo, T.; Nakagata, N.; Higashi, T.; Motoyama, K.; Arima, H.; Mochinaga, S.; Higaki, K.; Ohno, K.; Irie, T., Efficacy of 2-Hydroxypropyl-beta-cyclodextrin in Niemann-Pick Disease Type C Model Mice and Its Pharmacokinetic Analysis in a Patient with the Disease. Biological & pharmaceutical bulletin 2015, 38 (6), 844-51.
99. Lodish, H.; Darnell, J. E.; Berk, A.; Kaiser, C. A.; Krieger, M.; Scott, M. P.; Bretscher, A.; Ploegh, H.; Matsudaira, P., Molecular cell biology. Macmillan: 2008.
100. Anslyn, E. V.; Dougherty, D. A.; Dougherty, E. V.; Books, U. S., Modern Physical Organic Chemistry. University Science Books: 2006.
101. Uekama, K.; Otagiri, M., Cyclodextrins in drug carrier systems. Critical reviews in therapeutic drug carrier systems 1987, 3 (1), 1-40.
102. Harries, D.; Rau, D. C.; Parsegian, V. A., Solutes Probe Hydration in Specific Association of Cyclodextrin and Adamantane. Journal of the American Chemical Society 2005, 127 (7), 2184-2190.
103. Rekharsky, M. V.; Inoue, Y., Complexation Thermodynamics of Cyclodextrins. Chemical Reviews 1998, 98 (5), 1875-1918.
104. Choi, H. S.; Kontani, K.; Huh, K. M.; Sasaki, S.; Ooya, T.; Lee, W. K.; Yui, N., Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromolecular Bioscience 2002, 2 (6), 298-303.
105. Barros, M. C. F.; Ribeiro, A. C. F.; Esteso, M. A., Cyclodextrins in Parkinson's Disease. Biomolecules 2019, 9 (1).
106. Biedler, J. L.; Roffler-Tarlov, S.; Schachner, M.; Freedman, L. S., Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer research 1978, 38 (11 Pt 1), 3751-7.
107. Kovalevich, J.; Langford, D., Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in molecular biology (Clifton, N.J.) 2013, 1078, 9-21.
108. Krishna, A.; Biryukov, M.; Trefois, C.; Antony, P. M. A.; Hussong, R.; Lin, J.; Heinäniemi, M.; Glusman, G.; Köglsberger, S.; Boyd, O.; van den Berg, B. H. J.; Linke, D.; Huang, D.; Wang, K.; Hood, L.; Tholey, A.; Schneider, R.; Galas, D. J.; Balling, R.; May, P., Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genomics 2014, 15 (1), 1154.
109. Agholme, L.; Lindstrom, T.; Kagedal, K.; Marcusson, J.; Hallbeck, M., An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer's disease : JAD 2010, 20 (4), 1069-82.
110. La Quaglia, M. P.; Manchester, K. M., A comparative analysis of neuroblastic and substrate-adherent human neuroblastoma cell lines. Journal of Pediatric Surgery 1996, 31 (2), 315-318.
111. Ross, R. A.; Spengler, B. A.; Biedler, J. L., Coordinate morphological and biochemical interconversion of human neuroblastoma cells. Journal of the National Cancer Institute 1983, 71 (4), 741-7.
112. Xicoy, H.; Wieringa, B.; Martens, G. J. M., The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Molecular Neurodegeneration 2017, 12 (1), 10.
113. Huch, M.; Knoblich, J. A.; Lutolf, M. P.; Martinez-Arias, A., The hope and the hype of organoid research. Development (Cambridge, England) 2017, 144 (6), 938-941.
114. Jarazo, J.; Qing, X.; Schwamborn, J. C., Guidelines for Fluorescent Guided Biallelic HDR Targeting Selection With PiggyBac System Removal for Gene Editing. Frontiers in Genetics 2019, 10 (190).
115. Bolognin, S.; Fossepre, M.; Qing, X. B.; Jarazo, J.; Scancar, J.; Moreno, E. L.; Nickels, S. L.; Wasner, K.; Ouzren, N.; Walter, J.; Grunewald, A.; Glaab, E.; Salamanca, L.; Fleming, R. M. T.; Antony, P. M. A.; Schwamborn, J. C., 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Advanced Science 2019, 6 (1).
116. Rios, A. C.; Clevers, H., Imaging organoids: a bright future ahead. Nature methods 2018, 15 (1), 24-26.
117. Smits, L. M.; Reinhardt, L.; Reinhardt, P.; Glatza, M.; Monzel, A. S.; Stanslowsky, N.; Rosato-Siri, M. D.; Zanon, A.; Antony, P. M.; Bellmann, J.; Nicklas, S. M.; Hemmer, K.; Qing, X.; Berger, E.; Kalmbach, N.; Ehrlich, M.; Bolognin, S.; Hicks, A. A.; Wegner, F.; Sterneckert, J. L.; Schwamborn, J. C., Modeling Parkinson’s disease in midbrain-like organoids. npj Parkinson's Disease 2019, 5 (1), 5.
118. Chuysinuan, P.; Pavasant, P.; Supaphol, P., Preparation and Characterization of Caffeic Acid-Grafted Electrospun Poly(l-Lactic Acid) Fiber Mats for Biomedical Applications. ACS Applied Materials & Interfaces 2012, 4 (6), 3031-3040.
119. Dufour, G.; Evrard, B.; de Tullio, P., Rapid quantification of 2-hydroxypropyl-β-cyclodextrin in liquid pharmaceutical formulations by 1H nuclear magnetic resonance spectroscopy. European Journal of Pharmaceutical Sciences 2015, 73, 20-28.
120. Ross-Murphy, S. B., Dynamic Light Scattering. B. J. Berne and R. Pecora, John Wiley, New York, 1976, pp. 376. Price £16.50. British Polymer Journal 1977, 9 (2), 177-177.
121. German, D. C.; Manaye, K. F., Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. The Journal of comparative neurology 1993, 331 (3), 297-309.
122. Felten, D. L.; Sladek, J. R., Jr., Monoamine distribution in primate brain V. Monoaminergic nuclei: anatomy, pathways and local organization. Brain research bulletin 1983, 10 (2), 171-284.