| 研究生: |
韓煥文 Han, Huan-Wen |
|---|---|
| 論文名稱: |
葡萄球菌屬細菌之分子鑑定及mecA基因檢測 Molecular Identification of Staphylococcus spp. and Detection of the mecA Gene |
| 指導教授: |
張憲彰
Chang, Hsien-Chang 張長泉 Chang, Tsung-Chain |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 葡萄球菌 、葡萄球菌屬 、飛行質譜儀 、寡核苷酸晶片 、mecA基因 |
| 外文關鍵詞: | Staphylococci, Staphylococcus spp., MALDI-TOF, Oligonucleotide array, mecA gene |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛行質譜儀
葡萄球菌屬(Staphylococcus)尤其是金黃色葡萄球菌 (S. aureus) 在臨床上可引起很多感染,包括膿皰、蜂窩組織炎、泌尿道感染、肺炎、心內膜炎、心肌炎、腹膜炎、骨髓炎、菌血症、及食物中毒等。S. aureus很容易鑑定,但以生化特性鑑定其它葡萄球菌,有時並不是很可靠。基質輔助雷射脫附游離飛行時間質譜儀 (matrix-assisted laser desorption ionization-timeofflight mass spectrometry, MALDI-TOF MS) 已廣泛被應用於臨床菌種鑑定,其優點是便宜、快速、正確、及高通量等。根據 Bruker MALDI-TOF MS 軟体,當閾值 (score cutoff value) 大於2.0時,菌株可鑑定到種名,當閾值介於2.0 到 1.7 之間,只有鑑定到屬名,而軟体輸出的種名僅供參考,當閾值在 1.7 以下時,鑑定結果為不可靠。本研究評估 MALDI-TOF MS 對葡萄球菌的鑑定效果。以144株參考菌株 (36種) 及 440 株臨床分離株 (11種) 進行試驗,評估閾值 (2.0 或1.7) 及重複數(1或2重複) 對鑑定率的影響,這些菌株均先以 16S rRNA 基因,或 gap 或 tuf 基因確認種名,並以基因定序結果做為標準。在 440 臨床分離株中,閾值為 1.7 時,菌種、菌屬、及不可靠鑑定率分別為99.3%、0.2%、及0.5%。如果閾值為2.0 ,相對應鑑定率分別為 93.4%、5.7%、及 0.9%。二種閾值比較,閾值1.7對菌種鑑定率顯著性的較高(P< 0.01),而菌屬鑑定率則顯著性的較低 (P< 0.01)。在參考菌株中,也有同樣的趨勢。二重複和一重複比較且閾值為 2.0 時,前者對菌種鑑定率顯著性的較高 (93.4% vs 83.9%, P< 0.05); 在閾值為1.7時,也有類似結果 (99.3% vs 92.7%, P< 0.05)。總之,使用Bruker MALDI-TOF MS進行葡萄球菌菌種鑑定時, 建議使用閾值1.7及二重複。
寡核苷酸晶片
葡萄球菌屬 (Staphylococcus) 是一群在自然環境中廣泛存在的革蘭氏陽性球菌。早期認為分離到的葡萄球菌中,只有金黃色葡萄球菌 (S. aureus) 具有臨床意義,但近年許多研究指出,凝固酶陰性葡萄球菌 (coagulase-negative staphylococci; CoNS) 會造成臨床個案的感染,而現在大多認為CoNS是院內感染的一個重要來源,在嬰兒、進行移殖手術、及一些免疫不健全的患者中CoNS也會引起感染。葡萄球菌屬中除了S. aureus較容易鑑定外,CoNS菌株的鑑定需操作許多生化反應,有時菌種鑑定結果可靠性不高,另外CoNS菌株常褲帶有多種抗藥基因。本研究發展一種可以同時鑑定30種葡萄球菌及抗藥基因mecA的寡核苷酸晶片,並以129株目標參考菌株和434臨床分離株測試。每株菌皆以16S rRNA,或gap或tuf基因定序以確認種名,並以定序結果之種名做為鑑定標準,而抗藥性則以傳統藥物感受性試驗(紙錠擴散法)結果做為標準。寡核苷酸晶片正確鑑定100% (129/129)參考菌株。而在臨床分離株中,S. aureus的鑑定率為98.9%,CoNS的鑑定率為98%。在臨床分離的S. aureus中,檢測mecA基因對methicillin感受性的靈敏度及專一性分別為99% 及98.9%,而臨床分離的CoNS 菌株中,mecA檢測的靈敏度及專一性分別為97.2% 和93.7%。整體而論,晶片鑑定所需要的時間大約5個小時,可以同時準確地鑑定葡萄球菌種及mecA的存在,在臨床直接檢体的應用值得進一步探討。
MALDI-TOF
Phenotypic identification of species of Staphylococcuscan be difficult. The matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a cost-effective and rapid method for microbial identification. However, different score cutoff values have been used for identification of staphylococci. This study aimed toevaluate two score cutoffs (2.0 and 1.7) and replicate number onthe identification of staphylococci. A collection of 440 clinical isolates (11 species) identified by 16S rRNA or gap or tuf gene sequencing was evaluated in duplicate.At a cutoff of 1.7, the rates of species, genus, and unreliableidentifications were99.3%, 0.2%, and0.5% respectively, while the respective values were 93.4%, 5.7%, and 0.9% when a cutoff of 2.0 was used. Comparing the two cutoffs (1.7 vs 2.0), the species identification rate was significantly higher (99.3% vs 93.4%, P<0.05) and the genus identification rate was significantly lower(0.2% vs 5.7%, P<0.05) at the lower cutoff. Furthermore, 144 reference strains (37 species) of staphylococci wereanalyzed. The species identification rates were 88.9% and 77.1% at cutoffs of 1.7 and 2.0 (P< 0.05), respectively, and the respective rates for genus identification were 3.5% and 13.9% (P<0.05).Furthermore, a duplicate test resulted in higher species identification rates than a single test at a cutoff of 1.7 (99.3% vs 92.7%, P<0.05)or 2.0 (93.4% vs 83.9%, P<0.05). In conclusion, a cutoff of 1.7 and a duplicate test are recommended in routine practice for identification of staphylococci using the Bruker MALDI-TOF MS.
Oligonucleotid Array
AlthoughS. arureus is an important pathogen in clinical settings, coagulase-negative staphylococci (CoNS) can causea wide spectrum of infections inimmunosuppressed patients, neonates, and people with prosthetic implants. Phenotypic identification of CoNScan be not reliable and treatment of infections caused by CoNS is challenging as many species in this group carry genes for multiple antibiotic resistances. The aim of the study was to develop an oligonucleotide array to identify 30 species of staphylococci and to detect mecA gene in them. A total of 129 target reference strains and 434 clinical isolates of staphylococci were evaluated by the array. The species names of all reference strains and clinical isolates were reconfirmed by sequencing of genes of 16S rRNA, gaportuf.Species names determined by gene sequencing and methicillin susceptibility determined by the disc diffusion methodwere considered the gold standard. The array correctly identified100% (129/129) of allstaphylococcal reference strains, and 98.9% (186/188) of clinical isolates of S. aureus and 98% (241/246) of CoNS. Comparing with the disc diffusion method, mecAdetection by the array had a sensitivity of 99% and a specificity of 98.9% in clinical isolatesof S. aureus and the respective values inclinical isolates of CoNS were 97.2% and 93.7%. In conclusion, the current array with a turnaround time of 5 hhas a good performance for the identification of staphylococci and for the detection of mecA. Application of the array in direct clinical specimensneeds further investigation.
1. Abu Hujier NS, Sharif FA. 2008. Detection of methicillin-resistant Staphylococcus aureus in nosocomial infections in Gaza Strip. African Journal of Microbiology Research 2:235-241.
2. Alexopoulou K, Foka A, Petinaki E, Jelastopulu E, Dimitracopoulos G, Spiliopoulou I. 2006. Comparison of two commercial methods with PCR restriction fragment length polymorphism of the tuf gene in the identification of coagulase-negative staphylococci. Lett Appl Microbiol 43:450-454.
3. Altun O, Almuhayawi M, Måns Ullberg M, Özenci V. 2013. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles.J ClinMicrobiol 51:4130-4136.
4. Auletta AE, Kennedy ER. 1966. Deoxyribonucleic acid base composition of some members of the Micrococcaceae. J Bacteriol 92:28-34.
5. Becker K, Eiff Cv. 2011. Staphylococcus, Micrococcus, and Othe Catalase-Positive Cocci, p 308-330. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, vol 1. ASM, Washington D.C.
6. Becker K, Harmsen D, Mellmann A, Meier C, Schumann P, Peters G, von Eiff C. 2004. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol 42:4988-4995.
7. Bergeron M, Dauwalder O, Gouy M, Freydiere AM, Bes M, Meugnier H, Benito Y, Etienne J, Lina G, Vandenesch F, Boisset S. 2011. Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 30:343-354.
8. Biavasco F, Vignaroli C, Varaldo PE. 2000. Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 19:403-417.
9. Biberstein EL, Jang SS, Hirsh DC. 1984. Species distribution of coagulase-positive staphylococci in animals. J Clin Microbiol 19:610-615.
10. Bizzini A, Greub G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614-1619.
11. Blaiotta G, Fusco V, Ercolini D, Pepe O, Coppola S. 2009. Diversity of Staphylococcus spp. strains based on partial kat (catalase) gene sequences and design of a PCR-RFLP assay for identification and differentiation of coagulasepositive species (S. aureus, S. delphini, S. hyicus, S. intermedius, S. pseudintermedius, and S. schleiferi subsp. coagulans). J Clin Microbiol doi:10.1128/jcm.00542-09:JCM.00542-00509.
12. Blaiotta G, Fusco V, Ercolini D, Pepe O, Coppola S. 2010. Diversity of Staphylococcus species strains based on partial kat (catalase) gene sequences and design of a PCR-restriction fragment length polymorphism assay for identification and differentiation of coagulase-positive species (S. aureus, S. delphini, S. hyicus, S. intermedius, S. pseudintermedius, and S. schleiferi subsp. coagulans). J Clin Microbiol 48:192-201.
13. Brown DF. 2001. Detection of methicillin/oxacillin resistance in staphylococci.J Antimicrob Chemother 48Suppl 1:65-70
14. Carpaij N, Willems RJ, Bonten MJ, Fluit AC. 2011. Comparison of the identification of coagulase-negative staphylococci by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur J Clin Microbiol Infect Dis 30:1169-1172.
15. Casanova C, Iselin L, von Steiger N, Droz S, Sendi P. 2011. Staphylococcus hyicus bacteremia in a farmer. J Clin Microbiol 49:4377-4378.
16. Center KJ, Reboli AC, Hubler R, Rodgers GL, Long SS. 2003. Decreasedvancomycin susceptibility of coagulase-negative staphylococci in a neonatalintensive care unit: evidence of spread of Staphylococcus warneri. JClin Microbiol 41:4660-4665.
17. Chang, H. C., Y. F. Wei, L. Dijkshoorn, M. Vaneechoutte, C. T. Tang, and T. C. Chang. 2005. Identification of Acinetobacter isolates of the A. calcoaceticus-A. baumannii complex by sequence analysis of the 16S-23S rRNA genespacer region. J. Clin. Microbiol. 43:1632–1639.
18. Chapin K, Musgnug M. 2003. Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures. J Clin Microbiol 41:4324-4327.
19. Chatzigeorgiou KS, Siafakas N, Petinaki E, Argyropoulou A, Tarpatzi A, Bobola M, Paniara O, Velegraki A, Zerva L. 2010. Identification of staphylococci by Phoenix: validation of a new protocol and comparison with Vitek 2. Diagn Microbiol Infect Dis 68:375-381.
20. Chen CC, Teng LJ, Chang TC. 2004. Identification of clinically relevant viridans group streptococci by sequence analysis of the 16S-23S ribosomal DNA spacer region. J Clin Microbiol 42:2651-2657.
21. Chen CC, Teng LJ, Kaiung S, Chang TC. 2005. Identification of clinically relevant viridans streptococci by an oligonucleotide array. J Clin Microbiol 43:1515-1521.
22. Chen L, Cai Y, Zhou G, Shi X, Su J, Chen G, Lin K. 2014. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens. PLoS One 9:e88886.
23. Chen W, Djama ZR, Coffey MD, Martin FN, Bilodeau GJ, Radmer L, Denton G, Levesque CA. 2013. Membrane-based oligonucleotide array developed from multiple markers for the detection of many Phytophthora species. Phytopathology 103:43-54.
24. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169-1175.
25. Chiang YC, Lu HC, Li SC, Chang YH, Chen HY, Lin CW, Tsen HY. 2012. Development of PCR primers and a DNA macroarray for the simultaneous detection of major Staphylococcus species using groESL gene. Foodborne Pathog Dis 9:249-257.
26. Clark T, Huhn GD, Conover C, Cali S, Arduino MJ, Hajjeh R, Brandt ME, Fridkin SK. 2006. Outbreak of bloodstream infection with the mold Phialemonium among patients receiving dialysis at a hemodialysis unit. Infect Control Hosp Epidemiol 27:1164-1170.
27. Clerc O, Prod'hom G, Senn L, Jaton K, Zanetti G, Calandra T, Greub G. 2014. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and PCR-based rapid diagnosis of Staphylococcus aureus bacteraemia. Clin Microbiol Infect 20:355-360.
28. Clinical and Laboratory Standards Institute. 2015. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Clinical and Laboratory Standards Institute.Wayne, PA.
29. Corbiere Morot-Bizot S, Leroy S, Talon R. 2007. Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages. J Appl Microbiol 102:238-244.
30. Couto I, Pereira S, Miragaia M, Sanches IS, de Lencastre H. 2001. Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. Journal of Clinical Microbiology 39:3099-3103.
31. Crossley KB, Jefferson KK, Archer GL, Fowler VG. 2009. Staphylococci in Human Disease. Wiley.
32. De Paulis AN, Predari SC, Chazarreta CD, Santoianni JE. 2003. Five-test simple scheme for species-level identification of clinically significant coagulase-negative staphylococci. J Clin Microbiol 41:1219-1224.
33. Drancourt M, Raoult D. 2002. rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40:1333-1338.
34. Dupont C, Sivadon-Tardy V, Bille E, Dauphin B, Beretti JL, Alvarez AS, Degand N, Ferroni A, Rottman M, Herrmann JL, Nassif X, Ronco E, Carbonnelle E. 2010. Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect 16:998-1004.
35. Edwards KJ, Kaufmann ME, Saunders NA. 2001. Rapid and accurate identification of coagulase-negative staphylococci by real-time PCR. J Clin Microbiol 39:3047-3051.
36. Elamin WF, Ball D, Millar M. 2015. Unbiased Species-Level Identification of Clinical Isolates of Coagulase-Negative Staphylococci: Does It Change the Perspective on Staphylococcus lugdunensis? J Clin Microbiol 53:292-294.
37. Essers L, Radebold K. 1980. Rapid and reliable identification of Staphylococcus aureus by a latex agglutination test. J Clin Microbiol 12:641-643.
38. Forbes BA, Sahm DF, Weissfeld AS. 2007. Staphylococcus, Micrococcus, and Similar Organisms, Bailey & Scott's Diagnostic Microbiology, 12th ed. Mosby, St. Louis.
39. Fujita S, Senda Y, Iwagami T, Hashimoto T. 2005. Rapid identification of staphylococcal strains from positive-testing blood culture bottles by internal transcribed spacer PCR followed by microchip gel electrophoresis. J Clin Microbiol 43:1149-1157.
40. Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595-603.
41. Ghebremedhin B, Layer F, Konig W, Konig B. 2008. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019-1025.
42. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW. 1996. HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34:818-823.
43. Goh SH, Santucci Z, Kloos WE, Faltyn M, George CG, Driedger D, Hemmingsen SM. 1997. Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 35:3116-3121.
44. Han HW, Chang HC, Hunag AH, Chang TC.2015.Optimization of the score cutoff value for routine identification ofStaphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.Diagn Microbiol Infec Dis83:349-354.
45. Harrison LS. 2007. Staphylococci, p 367-380. In Mahon CR, Lehman DC, Manuselis G (ed), Textbook of Diagnostic Microbiology, Third ed. Saunder, St. Louis.
46. Harvey RA, Champe PC, Fisher BD. 2006. Lippincott's Illustrated Reviews: Microbiology. Lippincott Williams & Wilkins.
47. Hauschild T, Stepanovic S. 2008. Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism analysis of dnaJ gene. J Clin Microbiol 46:3875-3879.
48. Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC. 2005. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 43:2286-2290.
49. Hirotaki S, Sasaki T, Kuwahara-Arai K, Hiramatsu K. 2011. Rapid and accurate identification of human-associated staphylococci by use of multiplex PCR. J Clin Microbiol 49:3627-3631.
50. Hsiao CR, Huang L, Bouchara JP, Barton R, Li HC , Chang TC. 2005. Identification of medically important molds by an oligonucleotide array. J Clin Microbiol43:3760-3768.
51. Huebner J, Goldmann DA. 1999. Coagulase-negative staphylococci: Role as pathogens. Annual Review of Medicine 50:223-236.
52. Hwang SM, Kim MS, Park KU, Song J, Kim EC. 2011a. Tuf gene sequence analysis has greater discriminatory power than 16S rRNA sequence analysis in identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 49:4142-4149.
53. Hwang SM, Kim MS, Park KU, Song J, Kim EC. 2011b. tuf Gene Sequence Analysis Has Greater Discriminatory Power than 16S rRNA Sequence Analysis in Identification of Clinical Isolates of Coagulase-Negative Staphylococci. Journal of Clinical Microbiology 49:4142-4149.
54. Kaplan S, Marlowe EM, Hogan JJ, Doymaz M, Bruckner DA, Simor AE. 2005. Sensitivity and specificity of a rapid rRNA gene probe assay for simultaneous identification of Staphylococcus aureus and detection of mecA. J Clin Microbiol 43:3438-3442.
55. Karakulska J, Fijalkowski K, Nawrotek P, Pobucewicz A, Poszumski F, Czernomysy-Furowicz D. 2012. Identification and methicillin resistance of coagulase-negative staphylococci isolated from nasal cavity of healthy horses. J Microbiol 50:444-451.
56. Katayama Y, Ito T, Hiramatsu K. 2000. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549-1555.
57. Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG. 1999. Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37:3497-3503.
58. Kim M, Heo SR, Choi SH, Kwon H, Park JS, Seong MW, Lee DH, Park KU, Song J, Kim EC. 2008. Comparison of the MicroScan, VITEK 2, and Crystal GP with 16S rRNA sequencing and MicroSeq 500 v2.0 analysis for coagulase-negative Staphylococci. BMC Microbiol 8:233.
59. Klein S, Zimmermann S, Kohler C, Mischnik A, Alle W, Bode KA.2012. Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach. J Med Microbiol 61:323-331.
60. Kloos WE, Ballard DN, George CG, Webster JA, Hubner RJ, Ludwig W, Schleifer KH, Fiedler F, Schubert K. 1998. Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. Int J Syst Bacteriol 48 Pt 3:859-877.
61. Kontos F, Petinaki E, Spiliopoulou I, Maniati M, Maniatis AN. 2003. Evaluation of a novel method based on PCR Restriction Fragment Length Polymorphism Analysis of the tuf gene for the identification of Staphylococcus species. J Microbiol Methods 55:465-469.
62. Kooken J, Fox K, Fox A, Altomare D, Creek K, Wunschel D, Pajares-Merino S, Martinez-Ballesteros I, Garaizar J, Oyarzabal O, Samadpour M. 2014. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray). Mol Cell Probes 28:41-50.
63. Laurent F, Chardon H, Haenni M, Bes M, Reverdy ME, Madec JY, Lagier E, Vandenesch F, Tristan A. 2012. MRSA harboring mecA variant gene mecC, France. Emerg Infect Dis 18:1465-1467.
64. Layer F, Ghebremedhin B, Konig W, Konig B. 2007. Differentiation of Staphylococcus spp. by terminal-restriction fragment length polymorphism analysis of glyceraldehyde-3-phosphate dehydrogenase-encoding gene. J Microbiol Methods 70:542-549.
65. Layer F, Ghebremedhin B, Moder KA, Konig W, Konig B. 2006. Comparative study using various methods for identification of Staphylococcus species in clinical specimens. J Clin Microbiol 44:2824-2830.
66. Li X, Xing J, Li B, Wang P, Liu J. 2012. Use of tuf as a target for sequence-based identification of Gram-positive cocci of the genus Enterococcus, Streptococcus, coagulase-negative Staphylococcus, and Lactococcus. Ann Clin Microbiol Antimicrob 11:31.
67. Lievens B, Brouwer M, Vanachter AC, Levesque CA, Cammue BP, Thomma BP. 2005. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microbiol 7:1698-1710.
68. Lin MC, Huang AH, Tsen HY, Wong HC, Chang TC.2005. Use of oligonucleotide array for identification of six foodborne pathogens and Pseudomonas aeruginosa grown on selective media. J Food Prot 68:2278-2286.
69. Loonen AJ, Jansz AR, Bergland JN, Valkenburg M, Wolffs PF, van den Brule AJ. 2012. Comparative study using phenotypic, genotypic, and proteomics methods for identification of coagulase-negative staphylococci. J Clin Microbiol 50:1437-1439.
70. Maes N, De Gheldre Y, De Ryck R, Vaneechoutte M, Meugnier H, Etienne J, Struelens MJ. 1997. Rapid and accurate identification of Staphylococcus species by tRNA intergenic spacer length polymorphism analysis. J Clin Microbiol 35:2477-2481.
71. Marques S, Huss VA, Pfisterer K, Grosse C, Thompson G. 2015. Internal transcribed spacer sequence-based rapid molecular identification of Prototheca zopfii and Prototheca blaschkeae directly from milk of infected cows. J Dairy Sci 98:3001-3009.
72. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG. 2001. Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39:2541-2547.
73. Matsuda N, Matsuda M, Notake S, Yokokawa H, Kawamura Y, Hiramatsu K, Kikuchi K. 2012. Evaluation of a simple protein extraction method for species identification of clinically relevant staphylococci by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:3862-3866.
74. Mehta MS, Paule SM, Thomson RB, Kaul KL, Peterson LR. 2009. Identification of Staphylococcus species directly from positive blood culture broth by use of molecular and conventional methods. J Clin Microbiol 47:1082-1086.
75. Mellmann A, Becker K, von Eiff C, Keckevoet U, Schumann P, Harmsen D. 2006. Sequencing and staphylococci identification. Emerg Infect Dis 12:333-336.
76. Mignard S, Flandrois JP. 2007. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol 56:1033-1041.
77. Misawa Y, Yoshida A, Okugawa S, Moriya K. 2015. First reported case of Staphylococcus condimenti infection associated with catheter-related bacteraemia. New Microbes New Infect 3:18-20.
78. Monecke S, Gavier-Widen D, Mattsson R, Rangstrup-Christensen L, Lazaris A, Coleman DC, Shore AC, Ehricht R. 2013. Detection of mecC-positive Staphylococcus aureus (CC130-MRSA-XI) in diseased European hedgehogs (Erinaceus europaeus) in Sweden. PLoS One 8:e66166.
79. Morfin-Otero R, Martinez-Vazquez MA, Lopez D, Rodriguez-Noriega E, Garza-Gonzalez E. 2012. Isolation of rare coagulase-negative isolates in immunocompromised patients: Staphylococcus gallinarum, Staphylococcus pettenkoferi and Staphylococcus pasteuri. Ann Clin Lab Sci 42:182-185.
80. Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 29:2240-2244.
81. Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ. 2011. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980-2984.
82. Nijjar CK, Smith MH, Eltringham IJ. 2014. Adjunctive mecA PCR for routine detection of methicillin susceptibility in clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 52:1678-1681.
83. Njambere EN, Clarke BB, Zhang N. 2011. Dimeric oligonucleotide probes enhance diagnostic macroarray performance. J Microbiol Methods 86:52-61.
84. Novakova D, Sedlacek I, Pantucek R, Stetina V, Svec P, Petras P. 2006. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J Med Microbiol 55:523-528.
85. Osterlund A, Nordlund E. 1997. Wound infection caused by Staphylococcus hyicus subspecies hyicus after a donkey bite. Scand J Infect Dis 29:95.
86. Paterson GK, Harrison EM, Holmes MA. 2014a. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 22:42-47.
87. Paterson GK, Morgan FJ, Harrison EM, Cartwright EJ, Torok ME, Zadoks RN, Parkhill J, Peacock SJ, Holmes MA. 2014b. Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. J Antimicrob Chemother 69:907-910.
88. Picard FJ, Ke D, Boudreau DK, Boissinot M, Huletsky A, Richard D, Ouellette M, Roy PH, Bergeron MG. 2004. Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J Clin Microbiol 42:3686-3695.
89. Piette A, Verschraegen G. 2009. Role of coagulase-negative staphylococci in human disease. Vet Microbiol 134:45-54.
90. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. 2001. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296-4301.
91. Prere MF, Baron O, Cohen Bacrie S, Fayet O. 2006. Genotype MRSA, a new genetic test for the rapid identification of staphylococci and detection of mecA gene. Pathol Biol (Paris) 54:502-505.
92. Probst AJ, Hertel C, Richter L, Wassill L, Ludwig W, Hammes WP. 1998. Staphylococcus condimenti sp. nov., from soy sauce mash, and Staphylococcus carnosus (Schleifer and Fischer 1982) subsp. utilis subsp. nov. Int J Syst Bacteriol 48 Pt 3:651-658.
93. Prod'hom G, Bizzini A, Durussel C, Bille J, Greub G. 2010. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48:1481-1483.
94. Relman DA. 1993. Universal bacterial 16S rDNA amplification and sequencing, p489–495. InPersing DH, Smith TF, Tenover FC, White TJ (ed), Diagnostic Molecular Microbiology. American Society for Microbiology, Washington, DC.
95. Renneberg J, Rieneck K, Gutschik E. 1995. Evaluation of Staph ID 32 system and Staph-Zym system for identification of coagulase-negative staphylococci. J Clin Microbiol 33:1150-1153.
96. Richter C, Hollstein S, Woloszyn J, Kaase M, Gatermann SG, Szabados F. 2012. Evaluation of species-specific score cut-off values for various Staphylococcus species using a MALDI Biotyper-based identification. J Med Microbiol 61:1409-1416.
97. Roshdy DG, Tran A, LeCroy N, Zeng D, Ou FS, Daniels LM, Weber DJ, Alby K, Miller MB. 2015. Impact of a rapid microarray-based assay for identification of positive blood cultures for treatment optimization for patients with streptococcal and enterococcal bacteremia. J Clin Microbiol 53:1411-1414.
98. Rychert J, Burnham CA, Bythrow M, Garner OB, Ginocchio CC, Jennemann R, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Sercia L, Westblade LF, Ferraro MJ, Branda JA.2013. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 51:2225-2231.
99. Saffert RT, Cunningham SA, Mandrekar J, Patel R. 2012. Comparison of three preparatory methods for detection of bacteremia by MALDI-TOF mass spectrometry. Diagn Microbiol Infect Dis 73:21-26.
100. Sakoulas G, Gold HS, Venkataraman L, DeGirolami PC, Eliopoulos GM, Qian Q. 2001. Methicillin-resistant Staphylococcus aureus: comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol 39:3946-3951.
101. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K. 2007. Reclassification of phenotypically identified staphylococcus intermedius strains. J Clin Microbiol 45:2770-2778.
102. Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, Hirotaki S, Kawakami T, Fukata T, Hiramatsu K. 2010. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J Clin Microbiol 48:765-769.
103. Schulthess B, Brodner K, Bloemberg GV, Zbinden R, Bottger EC, Hombach M. 2013. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J Clin Microbiol 51:1834-1840.
104. Shin JH, Kim SH, Jeong HS, Oh SH, Kim HR, Lee JN, Yoon YC, Kim YW, Kim YH. 2011. Identification of coagulase-negative staphylococci isolated from continuous ambulatory peritoneal dialysis fluid using 16S ribosomal RNA, tuf, and SodA gene sequencing. Perit Dial Int 31:340-346.
105. Shukla SK, Ramaswamy SV, Conradt J, Stemper ME, Reich R, ReedKD, Graviss EA. 2004. Novel polymorphisms in mec genes and a new meccomplex type in methicillin-resistant Staphphlococcus aueus isolates obtainedin rural Wisconsin. Antimicrob Agents Chemother 48:3080–3085.
106. Siegman-Igra Y, Reich P, Orni-Wasserlauf R, Schwartz D, Giladi M.2005. The role of vancomycin in the persistence or recurrence of Staphylococcus aureus bacteremia. Scand. J Infect Dis 37:572.
107. Skow A, Mangold KA, Tajuddin M, Huntington A, Fritz B, Thomson RB, Jr., Kaul KL. 2005. Species-level identification of staphylococcal isolates by real-time PCR and melt curve analysis. J Clin Microbiol 43:2876-2880.
108. Spanu T, De Carolis E, Fiori B, Sanguinetti M, D'Inzeo T, Fadda G, Posteraro B. 2011. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates. Clin Microbiol Infect 17:44-49.
109. Speers DJ, Olma TR, Gilbert GL. 1998. Evaluation of four methods for rapid identification of Staphylococcus aureus from blood cultures. J Clin Microbiol 36:1032-1034.
110. Spergser J, Wieser M, Taubel M, Rossello-Mora RA, Rosengarten R, Busse HJ. 2003. Staphylococcus nepalensis sp. nov., isolated from goats of the Himalayan region. Int J Syst Evol Microbiol 53:2007-2011.
111. Stegger M, Andersen PS, Kearns A, Pichon B, Holmes MA, Edwards G, Laurent F, Teale C, Skov R, Larsen AR. 2012. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clinical Microbiology and Infection 18:395-400.
112. Stranieri I, Kanunfre KA, Rodrigues JC, Yamamoto L, Nadaf MI, Palmeira P, Okay TS. 2015. Usefulness of a 16S rDNA real-time PCR to monitor neonatal sepsis and to assist in medical decision to discontinue antibiotics. J Matern Fetal Neonatal Med doi:10.3109/14767058.2015.1077223:1-4.
113. Su HP, Tung SK, Tseng LR, Tsai WC, Chung TC, Chang TC. 2009. Identification of legionella species by use of an oligonucleotide array. J Clin Microbiol 47:1386-1392.
114. Sudagidan M, Yenidunya AF, Gunes H. 2005. Identification of staphylococci by 16S internal transcribed spacer rRNA gene restriction fragment length polymorphism. J Med Microbiol 54:823-826.
115. Suzuki H, Lefebure T, Bitar PP, Stanhope MJ. 2012. Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae. BMC Genomics 13:38.
116. Szabados F, Anders A, Kaase M, Marlinghaus L, Gatermann SG, Teske W, Lichtinger T. 2011. Late Periprosthetic Joint Infection due to Staphylococcus lugdunensis Identified by Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry: A Case Report and Review of the Literature. Case Rep Med 2011:608919.
117. Takahashi T, Satoh I, Kikuchi N. 1999. Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 49 Pt 2:725-728.
118. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. 2012. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301-3308.
119. Tegmark K, Morfeldt E, Arvidson S. 1998. Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci. J Bacteriol 180:3181-3186.
120. Tung SK, Teng LJ, Vaneechoutte M, Chen HM, Chang TC. 2006. Array-based identification of species of the genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus. J Clin Microbiol 44:4414-4424.
121. Tung SK, Teng LJ, Vaneechoutte M, Chen HM, Chang TC. 2007. Identification of species of Abiotrophia, Enterococcus, Granulicatella and Streptococcus by sequence analysis of the ribosomal 16S-23S intergenic spacer region. J Med Microbiol 56:504-513.
122. Turutoglu H, Hasoksuz M, Ozturk D, Yildirim M, Sagnak S. 2009. Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Veterinary Research Communications 33:945-956.
123. Utsui Y, Yokota T. 1985. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28:397-403.
124. van Griethuysen A, Buiting A, Goessens W, van Keulen P, Wintermans R, Kluytmans J. 1998. Multicenter evaluation of a modified protocol for the RAPIDEC staph system for direct identification of Staphylococcus aureus in blood cultures. J Clin Microbiol 36:3707-3709.
125. Vaneechoutte M, Dijkshoorn L, Tjernberg I. 1995. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. 33:11-15.
126. Vannuffel P, Heusterspreute M, Bouyer M, Vandercam B, Philippe M, Gala JL. 1999. Molecular characterization of femA from Staphylococcus hominis and Staphylococcus saprophyticus, and femA-based discrimination of staphylococcal species. Res Microbiol 150:129-141.
127. Velasco V, Sherwood JS, Rojas-Garcia PP, Logue CM. 2014. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) genes from selective enrichments from animals and retail meat. PLoS One 9:e97617.
128. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G. 2006. Gram-Positive Cocci Part I: Staphylococci and Related Gram-Positive Cocci, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th ed. Lippincott Willans & Wilkins, Philadelphia.
129. Wiwanitkit V. 2014. PCR analysis of 16S-23S ribosomal RNA internal transcribed spacer for identification of Acinetobacter clinical isolates. Indian J Med Microbiol 32:148.
130. York MK, Gibbs L, Chehab F, Brooks GF. 1996. Comparison of PCRdetection of mecA with standard susceptibility testing methods to determinemethicillin resistance in coagulase-negative staphylococci. J ClinMicrobiol 34:249–253.
131. Yugueros J, Temprano A, Berzal B, Sanchez M, Hernanz C, Luengo JM, Naharro G. 2000. Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a useful taxonomic tool for Staphylococcus spp. J Clin Microbiol 38:4351-4355.
132. Yugueros J, Temprano A, Sanchez M, Luengo JM, Naharro G. 2001. Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism of gap gene. J Clin Microbiol 39:3693-3695.
校內:2021-02-19公開