| 研究生: |
蔡瑛吉 Tsai, Ying-Chi |
|---|---|
| 論文名稱: |
貼壁式與嵌入鰭片式熱電模組三維熱液動分析及最佳化研究 3-D Thermal-Hydraulic and Optimization Analysis for Thermoelectric Generator Modules with Flat Spreader and Built-in Fin Heat Sink |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 220 |
| 中文關鍵詞: | 熱電發電模組 、熱交換器 、廢熱回收 、數值模擬 、最佳化分析 |
| 外文關鍵詞: | TEG, heat exchanger, waste heat recovery, numerical simulation, optimization analysis |
| 相關次數: | 點閱:105 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用數值模擬分析三維模式下廢氣煙道熱回收熱電系統,探討不同熱擷取裝置(集熱塊與嵌入式鰭片)之流場、溫度場以及電場的分佈。研究中熱電模組之物理模型包含高溫壁面(煙道)、熱電發電模組(thermoelectric generator,TEG)、集熱塊或嵌入式鰭片,以及水冷散熱器等。在數值分析上使用那維爾-史都克(Navier-Stokes)方程式作為流場統御方程式,並配合能量守恆與電流守恆方程式,求解熱電模組中熱電耦合效應。由於煙道內廢氣具有高放射率氣體且屬於偏高溫環境,所以流場必須同時考慮對流及輻射熱傳。此外,本研究著重於最佳化設計,採用簡易共軛梯度法(Simplified Conjugate-Gradient Method,SCGM)作為最佳化搜尋器,結合商業計算流體力學(CFD)軟體進行最佳化分析。
首先在貼壁式熱電模組的部分,探討不同操作條件下(包括不同集熱塊材料、廢氣溫度、等效熱對流係數)改變集熱塊尺寸之影響,並計算熱電模組的發電功率(Pmax)與轉換效率(η)。再針對貼壁式熱電模組的排列間距(S)與集熱塊厚度(Hsp),於不同操作條件中(包括冷熱側流體溫差ΔT = 200 – 800 K、等效熱對流係數heff = 20 – 80 W/m2•K),探討熱電模組的發電功率(Pmax)與發電密度(Pmax/A)之變化。結果發現集熱塊的熱擴散效應增加熱傳路徑,進而減少系統整體熱阻,當熱電晶片加裝集熱塊後,最大功率可有效提升50%以上。最後利用最佳化方法-簡易共軛梯度法,以熱電模組之最大發電密度為其目標函數,搜尋貼壁式熱電系統中最佳的設計參數,且搜尋範圍分別為排列間距從40mm至300mm之間,以及集熱塊厚度從1mm至30mm之間。
在嵌入式熱電模組的部分,針對嵌入式熱電模組的鰭片高度(0mm < Hfin < 100mm)與鰭片支數(4 < N < 8),於不同操作條件中(包括廢氣流速Vin = 3、5、10 m/s、廢氣溫度Tgas = 500、600、700 K),以參數分析探討熱電模組的理想發電密度(PTEG/A)與鰭片所造成的額外泵功密度(Pfan/A),以及模組淨發電密度(Pnet/A)之變化。結果顯示當高廢氣流速(Vin = 10m/s)與廢氣溫度(Tgas = 600K),鰭片高度Hfin約50mm具有最大淨發電密度。隨後便針對廢氣速度與鰭片高度進行最佳化分析,探討不同廢氣溫度(Tgas = 500K、600K、700K)下最佳流速與鰭片高度設計。此外,貼壁式與嵌入式熱電模組研究中皆進行實驗比對,以自行架設的小型風洞實驗系統,量測各種不同條件下熱電模組測試本體之性能曲線(V-I與P-I曲線),實驗結果顯示與數值分析具有良好的一致性,在熱電模組之最大發電量比較,貼壁式熱電模組誤差約8%,而嵌入式模組誤差約9%。
最後,在百葉窗型鰭片的部分,討論不同操作條件(包括廢氣溫度與入口風速)下,百葉窗角度(θ)與百葉窗間距(Lp)變化所造成熱傳因子(j)與壓降因子(f)之影響。並且使用簡易共軛梯度法進行最佳化搜尋,以熱交換器性能評價中最大面積縮減率(1-A/Aref)作為其目標函數,結合商業計算流體力學軟體,搜尋不同百葉窗間距(Lp = 0.7mm、1.0mm與1.3mm)下最佳的百葉窗型鰭片角度。結果表示當Lp = 1.0mm時,隨著不同的雷諾數百葉窗鰭片角度變化具有不同最佳面積縮減率,當雷諾數ReH從100至500,最大的面積縮減率分別是65.3%、66.9%、65.6%、63.7%和62.2%。並在文末將最佳百葉窗角度結果基於雷諾數迴歸出近似關係式。
This paper investigates the three-dimensional thermoelectric generator (TEG) are attached to a rectangular chimney used for venting flue gas from either a boiler or stove. The thermoelectric module consists of a hot plate, a flat spreader (or a built-in fin heat sink), a thermoelectric generator and a cold plate based on water cooling. In a thermoelectric analysis, the three-dimensional governing equations of heat and electric current in TEG at steady state are based on the conservation of energy and current. In addition, the flue gas flow is assumed to be a three-dimensional, steady, turbulent flow which is solved by mass, momentum (Reynolds-averaged Navier-Stokes equation), energy, turbulent - equations in the fluid region. Because of the high temperature flue gas flowing into the chimney tunnel, the radiation effect is considered. Moreover, the Simplified Conjugate-Gradient Method (SCGM) was used to search the optimal design. The approach is developed by using the commercial CFD code as the direct problem solver, which is able to provide the numerical solutions.
In terms of TEG modules with flat spreader, the optimization of TEG module spacing and its spreader thickness as used in a waste heat recovery system is investigated and solved numerically using the finite difference method along with a simplified conjugate-gradient method. The power density for a thermoelectric module is the objective function to be maximized. A search for the optimum module spacing (S) and spreader thickness (Hsp), ranging from 40mm < S < 300mm and 1mm < Hsp < 30mm, respectively, is performed. The effects of different operating conditions, including the temperature difference between the waste gas and the cooling water (ΔT = 200 – 800 K), and effective waste gas heat transfer coefficients (heff = 20 – 80 W/m2•K) are discussed in detail. It was demonstrated that the proper size of a heat spreader can decrease the thermal resistance and that the maximum power Pmax with a spreader can be significantly increased (up to 50%) as compared to TEG without spreader. The predicted numerical data for the power versus current (P–I) curve are in good agreement (within 8%) with the experimental data.
In terms of TEG modules with built-in fin heat sink, the study investigates the power output performance of the TEG module, three-dimensional numerical simulations combining convection and radiation effects, including the chimney tunnel, TEG modules, plate-fin heat sinks and cold plates, based on water cooling are developed and solved simultaneously. The effects of operational parameters such as the flue gas velocity (Vin = 3, 5 and 10 m/s) and flue gas temperatures (Tgas = 500, 600 and 700 K) on the flow and heat transfer are determined. The influences of the plate-fin height (Hfin) and number of fins (N), ranging from 0mm < Hfin < 100mm and 4 < N < 8, on the power output and pressure drop are also described in detail. It is worthy of note that the net electric power (Pnet) of the TEG module was obtained using the ideal electric power (PTEG) minus the extra pumping power (Pfan). The numerical results for the power versus current (P–I) curve are in good agreement with the experimental data within an error of 9%.
In terms of louver fin, this study suggests a method for finding the optimal louver angle of a fin heat exchanger by use of a simplified conjugate-gradient method (SCGM) and a three-dimensional computational fluid dynamics model. The search for optimum louver angles ranging from θ = 15 to 45 for suitable louver pitches and fluid input velocity are carried out for Reynolds number ReH (based on the fin spacing 1.5 mm and the frontal velocity 1 - 5 m/s) ranging from 100 to 500. The maximum area reduction of using louver surface relative to the plain surface is the objective function to be maximized. The model calculates optimum performance of the heat-exchanger by means of finding the fin angle which would give the biggest reduction in area of the louvered surfaces relative to plain fin surfaces required to give equivalent performance. The numerical optimizer adjusts the angle of the louvered fin toward the maximization of the performance of the heat exchanger. Additionally, the correlations of the optimal louver angle as function of Reynolds number ReH are obtained.
1. Ioffe, A.F., Editor, “Semiconductor thermoelements and thermoelectric cooling”. Infosearch, London, UK, 1957.
2. Bennett, G.L., Lombardo, J.J., Hemler, R.J., Silverman, G., Whitmore, C.W., Amos, W.R., Johnson, E.W., Schock, A., Zocher, R.W., Keenan, T.K., Haganim, J.C., Englehart, R.W., “Mission of daring: The general-purpose heat source radioisotope thermoelectric generator”. Proceedings of 4th International Energy Conversion Conference and Exhibit (IECEC), San Diego, CA, USA, 2006.
3. Bejan, A., Editor, Advanced engineering thermodynamics, 3rd ed., John Wiley & Sons, Hoboken, USA, 2006.
4. Angrist, S.W., Editor, Direct energy conversion, 4th ed., Allyn and Bacon, Boston, USA, 1992.
5. Min, G., Rowe, D.M., “Optimization of thermoelectric module geometry for ‘waste heat’ electric power generation”. Journal of Power Sources, Vol. 38, No. 3, pp. 253–259, 1992.
6. Min, G., Rowe, D.M., “Evaluation of thermoelectric modules for power generation”, Journal of Power Sources, Vol. 73, No. 2, pp. 193–198, 1998.
7. Rowe, D.M., “A high performance solar powered thermoelectric generator”, Applied Energy, Vol. 8, No. 4, pp. 269–273, 1981.
8. Chen, J., Yan, Z., Wu, L., “The influence of thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator”, Journal of Applied Physics, Vol. 79, No. 11, pp. 8823–8828, 1996.
9. Xuan, X.C., Ng, K.C., Yap, C., Chua, H.T., “A general model for studying effects of interface layers on thermoelectric devices performance”, International Journal of Heat and Mass Transfer, Vol. 45, No. 26, pp. 5159–5170, 2002.
10. Pramanick, A.K., Das, P.K., “Constructal design of a thermoelectric device”, International Journal of Heat and Mass Transfer, Vol. 49, No. 7-8, pp. 1420–1429, 2006.
11. Riffat, S.B., Ma, X.L., “Thermoelectrics: a review of present and potential applications”, Applied Thermal Engineering, Vol. 23, No. 8, pp. 913–935, 2003.
12. Ono, K., Suzuki, R.O., “Thermoelectric power generation: Converting low-grade heat into electricity”, JOM Journal of The Minerals, Metals And Materials Society, Vol. 50, No. 12, pp. 49-51, 1998.
13. Rowe, D.M., “Thermoelectrics, an environmentally-friendly source of electrical power”, Renewable Energy, Vol. 16, No. 1-4, Pages 1251-1256 , 1999.
14. Khattab, N.M., El Shenawy E. T., “Optimal operation of thermoelectric cooler driven by solar thermoelectric generator”, Energy Conversion and Management, Vol. 47, No. 4, pp. 407–426, 2006.
15. Wu, C.H., “Analysis of waste-heat thermoelectric power generators”, Applied Thermal Engineering, Vol. 16, No. 1, pp. 63-69, 1996.
16. Qiu, K., Hayden, A.C.S., “Development of a thermoelectric self-powered residential heating system”, Journal of Power Sources, Vol. 180, No. 2, pp. 884-889, 2008.
17. Hsiao, Y.Y., Chang, W.C., Chen, S.L., “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine”, Energy, Vol. 35, No. 3, pp. 1447-1454, 2010.
18. Thacher, E.F., Helenbrook, B.T., Karri, K.A., Richter, C.J., “Testing of an automobile exhaust thermoelectric generator in a light truck”, Proceedings of the Institution of Mechanical Engineers - Part D: Journal of Automobile Engineering, Vol. 221, pp. 95-107, 2007.
19. Suzuki, R.O., Tanaka, D., “Mathematical simulation of thermoelectric power generation with the multi-panels”, Journal of Power Sources, Vol. 122, No. 2, pp. 201-209, 2003.
20. Niu, X., Yu, J., Wang, S., “Experimental study on low-temperature waste heat thermoelectric generator”, Journal of Power Sources, Vol. 188, No. 2, pp. 621-626, 2009.
21. Crane, D.T., Jackson, G.S., “Optimization of cross flow heat exchangers for thermoelectric waste heat recovery”, Energy Conversion and Management, Vol. 45, No. 9-10, pp. 1565–1582, 2004.
22. Rezania, A., Rosendahl, L.A., Andreasen, S.J., “Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink”, International Communications in Heat and Mass Transfer, Vol. 39, No. 8, pp. 1054–1058, 2012.
23. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy & Environmental Science, Vol. 2, No. 5, pp. 466–479, 2009.
24. Antonova, E.E., Looman, D.C., “Finite elements for thermoelectric device analysis in ANSYS”, Proceedings of the 24th International Conference on Thermoelectrics, Clemson, SC, USA, 2005.
25. Cheng, C.H., Huang, S.Y., Cheng, T.C., “A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers”, International Journal of Heat and Mass Transfer, Vol. 53, No. 9-10, pp. 2001–2011, 2010.
26. Chen, M., Rosendahl, L.A., Condra, T., “A three-dimensional numerical model of thermoelectric generators in fluid power systems”, International Journal of Heat and Mass Transfer, Vol. 54, No. 1-3, pp. 345–355, 2011.
27. Rezania, A., Rosendahl, L.A., “Thermal effect of a thermoelectric generator on parallel microchannel heat sink”, Energy, Vol. 37, pp. 220–227, 2012.
28. Rezania, A., Rosendahl, L.A., “Thermal effect of ceramic substrate on heat distribution in thermoelectric generators”, Journal of Electronic Materials, Vol. 41, No. 6, pp. 1343–1347, 2012.
29. Kennedy, D.P., “Spreading resistance in cylindrical semiconductor devices”, Journal of Applied Physics, Vol. 31, No. 8, pp. 1490–1497, 1960.
30. Lee, S., Song, S., Au, V., Moran, K.P., “Constriction/spreading resistance model for electronics packaging”, Proceedings of the 4th ASME/JSME Thermal Engineering Joint Conference, Hawaii, USA, 1995.
31. Song, S., Lee, S., Au, V., “Closed-form equation for thermal constriction/ spreading resistances with variable resistance boundary condition”, Proceedings of International Electronics Packaging Conference, Atlanta, GA, USA, 1994.
32. Yovanovich, M.M., Chapter 3, “Conduction and thermal contact resistances (Conductances)”, Edited Rohsenow, W.M., Hartnett J.P., Cho, Y.L., “Handbook of heat transfer”, 2nd ed., McGraw-Hill, New York, USA, 1998.
33. Yovanovich, M.M., Muzchka, Y.S., Culham, J.R., “Spreading resistance of isoflux rectangles and strips on compound flux channels”, Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, pp. 495–500, 1999.
34. Hodes, M., “Formulae to size axisymmetric heat spreaders above dielectric layers”, Proceedings of International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 2000.
35. Chen, Y.S., Chien, K.H., Tseng, Y.S., Chan, Y.K., “Determination of optimized rectangular spreader thickness for lower thermal spreading resistance”, Journal of Electronic Packaging, Vol. 131, No, 1, pp. 011004 1–8.
36. Lee, S., “Optimum design and selection of heat sinks”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 18, No. 4, pp. 812–817, 1995.
37. Wirtz, R.A., Chen, W., Zhou, R., “Effect of flow bypass on the performance of longitudinal fin heat sinks”, Journal of Electronic Packaging, Vol. 116, No. 3, pp. 206–212, 1994.
38. Jousson, H., Palm, B., “Thermal and hydraulic behavior of plate fin and strip fin heat sinks under varying bypass conditions”, IEEE Transactions on Components and Packaging Technologies, Vol. 23, pp. 47–54, 2000.
39. Jonsson, H., Moshfegh, B., “Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks-influence of flow bypass”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, pp. 142–149, 2001.
40. Hossain, R., Culham, J.R., Yovanovich, M.M., “Influence of bypass on flow through plate fin heat sinks”, Semiconductor Thermal Measurement and Management Symposium 2007, 23 Annual IEEE, pp. 220–227, 2007.
41. Barrett, A.V., Obinelo, I.F., “Characterization of longitudinal fin heat sink thermal performance and flow bypass effects through cfd methods”, Semiconductor Thermal Measurement and Management Symposium, 1997, 13 Annual IEEE, pp. 158–164, 1997.
42. Prstic, S., Iyengar, M., Bar-Cohen, A., “Bypass effect in high performance heat sinks”, Proceedings of International Thermal Sciences Conference, Bled, Slovenia, 2000.
43. 黃有晟, “鰭片嵌入式熱電模組之性能測試與分析”, 國立成功大學, 機械工程研究所, 2012.
44. Webb, R.L., Editor, “Principles of Enhanced Heat Transfer”, John Wiley and Sons, Hoboken, USA, 1994.
45. Bergles, A.E., “Heat transfer enhancement: The encouragement and accommodation of high heat fluxes”, ASME Journal of Heat Transfer, Vol. 119, pp.8-19, 1997.
46. Kays, W.M., London, A.L., “Heat transfer and flow friction characteristics of some compact heat exchanger surfaces-Part I: Test system and procedure”, ASME Journal of Heat Transfer, Vol. 72, pp. 1075–1085, 1950.
47. Beauvais, F.N., “An aerodynamic look at automotive radiators”, SAE paper No.650470, 1965.
48. Davenport, C.L., “Heat transfer and fluid flow in louvred triangular ducts”, Ph.D. thesis, CNAA, Lanchester Polytechnic, 1980.
49. Davenport, C.L., “Correlations for heat transfer and flow friction characteristics of louvred fin”, AIChE Symposium Series, Vol. 79, pp.19-27, 1983.
50. Achaichia, A., Cowell, T.A., “Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces”, Experimental Thermal and Fluid Science, Vol. 1, No. 2, pp. 147–157, 1988.
51. Webb, R.L., Trauger, P.A., “Flow structure in the louvered fin heat exchanger geometry”, Experimental Thermal and Fluid Science, Vol. 40, No. 3, pp. 205–217, 1991.
52. Sabnoun, A., Webb, R.L., “Prediction of heat transfer and friction for louver fin geometry”, ASME Journal of Heat Transfer, Vol. 114, No. 4, pp. 893–900, 1992.
53. Webb, R.L., Jung, S.H., “Air side performance of enhanced brazed aluminum heat exchangers”, ASHRAE Transactions, Vol. 98, Pt.2, pp.391-401, 1992.
54. Sunden, B., Svantesson, J., “Thermal hydraulic performance of new multilouvered fins”, Proceedings of the 9th International Heat Transfer Conference, Vol. 14-HX-16, pp. 91–96, 1990.
55. Sunden, B., Svantesson, J., “Correlation of j- and f-factors for multi louvered heat transfer surfaces”, Proceedings of the 3rd UK National Heat Transfer Conference, pp. 805–811, Rugby, UK, 1992.
56. Chang, Y.J., Wang, C.C., Chang, W.R., “Heat transfer and flow characteristics of automotive brazed aluminum heat exchangers”, ASHRAE Transactions, Vol. 100, Pt.2, pp. 643–652, 1994.
57. Webb, R.L., Chang, Y.J., Wang, C.C., “Heat transfer and friction correlation for the louver fin geometry”, International journal heat and mass transfer, Proceedings of the Vechicle Thermal Management System, Vol. 2, pp. 533–541, 1995.
58. Chang, Y.J, Wang, C.C., “Air side performance of brazed aluminum heat exchangers”, Journal of Enhanced Heat Transfer, Vol. 3, pp. 15–28, 1996.
59. Chang, Y.J., Wang, C.C., “A generalized heat transfer correlation for louver fin geometry”, International Journal Heat and Mass Transfer, Vol. 40, No. 3, pp. 533–544, 1997.
60. Wang, C.C., Chang, Y.P., Chi, K.Y., Chang, Y.J., “A study of non-redirection louver fin-and-tube heat exchangers”, Journal of Mechanical Engineering Science, Vol.212, pp. 1–14, 1998.
61. Wang, C.C., Chi, K.Y., Chang, Y.J., Chang, Y.P., “An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers, International Journal Heat and Mass Transfer, Vol.41, pp. 817–822, 1998.
62. Chang, Y.J., Wang, C.C., Lin, S.P., “Heat transfer and friction correlation for compact louvered fin and tube heat exchangers”, International Journal Heat and Mass Transfer, Vol. 42, No. 11, pp. 1945–1956, 1999.
63. Wang, C.C., Lin, Y.T., Lee, C.J., “Heat and momentum transfer for compact louvered fin and tube heat exchangers in wet conditions”, International Journal Heat and Mass Transfer, Vol. 43, No. 18, pp.3443–3452, 2000.
64. Wang, C.C., Lee, W.S., Sheu, W.J., “A comparative study of compact enhanced fin and tube heat exchangers”, International Journal Heat and Mass Transfer, Vol. 44 , No. 18, pp.3565–3573, 2001.
65. Suga, K., Aoki, H., Shinagawa, T., “Numerical analysis on two- dimensional flow and heat transfer of louvered fins using overlaid grids”, JSME International Journal Series Ⅱ, Vol.33, No.1, pp.122–127, 1990.
66. Suga, K., Aoki, H., “Numerical study on heat transfer and pressure drop in multilouvered fins”, Proceedings of ASME/JSME Thermal Engineering Joint Conference, Vol.4, pp.361–368, 1991.
67. M. Hiramatsu, T. Ishimaru, K. Matsuzaki, “Research on fins for air conditioning heat exchangers”, JSME international journal series II,Vol. 33, No. 4, 1990.
68. Ikuta, S., Sasaki, Y., Tanaka, K., Takagi, M., Himeno, R., “Numerical analysis of heat transfer around louver assemblies”, SAE paper No.900081, 1990.
69. Achaichia, A., Heikal, M.R., Sulaiman, Y., Cowell, T.A., “Numerical investigation of flow and friction in louvered fin arrays”, Proceedings of the Tenth International Heat Transfer Conf., Brighton, 1994.
70. Jang, J.Y., Wu, M.C., Chang, W.J., “Numerical and experimental studies of tree-dimensional plate-fin and tube heat exchangers”, International Journal Heat and Mass Transfer, Vol. 39, No. 14, pp.3057–3066 , 1996.
71. Jang. J.Y., Chen, L.K., “Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger”, International Journal Heat and Mass Transfer, Vol. 40, No. 16, pp.3981–3990 , 1997.
72. Jang, J.Y., Shieh, K.P., Ay, H., “3-D thermal-hydraulic analysis in convex louver finned -tube heat exchangers”, ASHRAE Annual Meeting, Cincinnati, OH, U.S.A., June 22-27, Vol.107 Pt.2, pp.501–509, 2001.
73. Atkinsona, K.N., Drakulic, R., Heikal, M.R., Cowell, T.A., “Two- and three-dimensional numerical models of flow and heat transfer over louvred fin arrays in compact heat exchangers”, International Journal Heat and Mass Transfer, Vol. 41 , No. 24, pp.4063–4080, 1998.
74. Tafti, D.K., Wang, G., Lin W., “Flow transition in a multilouvered fin array”, International Journal Heat and Mass Transfer, Vol. 43, pp.901–919., 2000.
75. Beamer, H.E., Cowell, T.A., “Heat exchanger cooling fin with varying louver angle”, United States Patent 5730214, March 24, 1998.
76. 王啟川, 熱交換器設計(二版), 五南出版社, 2005.
77. Chang, Y.J., Chang, W.J., Li, M.C., Wang, C.C., “An amendment of the generalized friction correlation for louver fin geometry”, International Journal of Heat and Mass Transfer, Vol. 49, pp. 4250–4253, 2006.
78. Gnielinski, V., “New equation for heat and mass transfer in turbulent pipe and channel flow”, International Journal of Chemical Engineering, Vol. 16, pp. 359–367, 1976.
79. Incoropera, F.P., DeWitt, D.P., Editor, “Fundamentals of heat and mass transfer”, 5th ed., John Wiley & Sons, Hoboken, USA, 2002.
80. Launder, B.E., Spalding, D.B., “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269–289, 1974.
81. Chen, Y.S., Kim, S.W., “Computation of turbulent flows using an extended turbulence closure model”, NASA CR-179204. 1987
82. Wang, T. S., Chen, Y. S., “Unified Navier-Stokes Flow Field and Performance Analysis of Liquid Rocket Engines”, Journal of Propulsion and Power, Vol. 9, No. 5, pp. 678-685, 1993.
83. Modest, M.F., Editor, “Radiative heat transfer”, 2nd ed., McGraw-Hill New York, USA, 2003.
84. Fiveland, W., “Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures”, Journal of Heat Transfer, Vol. 106, No. 4, pp. 699–706, 1984.
85. Irvine, T.F., Liley, P.E., Editor, “Steam and gas Tables with Computer Equations”, 1st ed., Academic Press, Orlando, USA, 1984.
86. Hottel, H.C., Chap 4. “Radiant heat transmission”, Edited McAdams, W.H., “Heat transmission”, 3rd ed., McGraw-Hill, New York, USA, 1954.
87. Antoniou, A.A., Heikal, M.R., Cowell, T.A., “Measurements of local velocity and turbulence levels in arrays of louvered plate fins”, Proceedings of 9th International Heat Transfer Conference, pp. 105–110, 1990.
88. CFD-ACE(U). CFD Research Corporation. Alabama. USA. 2003.
89. ANSYS Fluent, A Release 12.0, Documentation for ANSYS Workbench, ANSYS Ltd., 2009
90. Van Doormal J.P., Raithby G.D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Numerical Heat Transfer,Vol. 7, pp. 147–63, 1984.
91. Hestenes, M.R., Stiefel, E., “Methods of conjugate gradients for solving linear systems”, Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, pp. 409–436, 1952.
92. Fletcher, R., Reeves, C.M., “Function minimization by conjugate gradients”, Computer Journal, Vol. 7, No. 2, pp. 149–154, 1964.
93. Fried, I., Metzler, J., “SOR vs. Conjugate gradients in a finite element discretization”, International Journal for Numerical Methods in Engineering, Vol. 12, pp. 1329–1342, 1978.
94. Cheng, C.H., Chang, M.H., “A simplified conjugate-gradient method for shape identification based on thermal data”, Numerical Heat Transfer, Vol. 43, No. 5, pp. 489–507, 2003.
95. Belanger, S., Gosselin, L., “Multi-objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery”, International Journal of Energy Research, Vol. 36, pp. 632–642, 2012
96. Yu, S.H., Lee, K.S., Yook, S.J., “Optimum design of a radial heat sink under natural convection”, International Journal of Heat and Mass Transfer, Vol. 54, No. 11–12, pp. 2499–2505, 2011.
97. Moffat, R.J., “Describing the uncertainties in experimental results”, Experimental Thermal and Fluid Science, Vol. 1, No. 1, pp. 3–17, 1988.
98. Bevington, P., Robinson D.K., Editor, Data Reduction and Error Analysis for the Physical Sciences, 3rd ed., McGraw-Hill, New York, USA, 2002.
99. Kim, M.H., Bullard, C.W., “Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers”, International Journal of Refrigeration, Vol. 25, No. 3. pp. 390–400, 2002.