簡易檢索 / 詳目顯示

研究生: 陳宥溱
Chen, Yu-chen
論文名稱: 使用螺旋共振器之60-GHz CMOS帶通濾波器
Design of 60-GHz CMOS Bandpass Filter Using Spiral-resonators
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 外部品質因子耦合係數螺旋共振器帶通濾波器
外文關鍵詞: external quality factor, coupling coefficient, bandpass filter, spiral resonator
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用TSMC提供之0.18 μm CMOS製程與IE3D模擬軟體,實現使用螺旋共振器來合成60-GHz帶通濾波器,共振器採取螺旋形狀主要為可減少共振器所需要的面積,大幅縮小濾波器的面積,並提高選擇性。首先設計之螺旋共振器採同平面耦合,饋入以寬邊耦合方式,增加螺旋共振器之間耦合量,在兩共振器耦合處下方,挖掉部分地,以減少感應磁場在接地面引起的損耗。其次設計之帶通濾波器採取上下耦合方法來增加耦合量,避免因缺陷地而影響共振器的共振頻率。亦縮小pad的大小以減少饋入線與pad間的不連續面效應,濾波器的面積約縮小72.1 %。 量測與模擬不符合之處,經過使用不同模擬軟體模擬比較,發現使用HFSS模擬軟體模擬相同結構與環境參數,可得到與量測值相當吻合的結果。

    This thesis presents the design and implementation of the 60-GHz CMOS bandpass filters using spiral-resonators. The filters are fabricated with TSMC 0.18-µm standard CMOS process. IE3D EM solver is used for design simulation. The spiral resonators can reduce the filter and improve the selectivity. Two CMOS filters have been designed. The first design uses edge-coupled resonators and the broadside-coupled feed line. The defected ground has been used to enhance the coupling between the resonators. The second design adopts the broadside-coupled resonators without a defected ground. It also reduces the pad size to decrease the discontinuities between the feed line and the pads and achieve a size reduction of 72 %. The discrepancy between simulation and measurement has been checked by a 3-D EM solver, Ansoft HFSS, for debugging.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 短距無線通訊60-GHz WPAN系統簡介 1 1.3 論文架構 3 第二章 共振器特性分析與濾波器合成方法 5 2.1 共振器簡介 5 2.2 平面式λ/2共振器種類 8 2.3 微帶線半波長共振器的耦合結構 9 2.3.1 電耦合(electric coupling) 10 2.3.2 磁耦合(magnetic coupling) 12 2.3.3 混合耦合(mixed coupling) 14 2.3.4 非對稱耦合( asymmetric coupling)[2] 16 2.4 饋入方法[2] 21 2.4.1 單一負載共振器 21 2.4.2 雙端負載共振器 24 2.5 濾波器合成方法 26 2.6 2.4 GHz PCB帶通濾波器設計合成 27 第三章 60-GHz CMOS螺旋共振器帶通濾波器 29 3.1 簡介 29 3.1.1 設計架構 29 3.1.2 模擬設計流程 30 3.2 設計方法 30 3.2.1 螺旋共振器的選擇 30 3.2.2 螺旋共振器的耦合係數 36 3.2.3 螺旋共振器下方挖地 38 3.2.4 輸入/輸出外部品質因子(Qe) 41 3.3 螺旋共振器帶通濾波器 42 3.3.1 濾波器結構圖及晶片圖 42 3.4 模擬與量測結果 44 3.5 問題討論與結論 46 第四章 使用堆疊式螺旋共振器之60-GHz CMOS帶通濾波器 47 4.1 簡介 47 4.1.1 設計架構 47 4.1.2 設計流程 48 4.2 設計方法 48 4.2.1 螺旋共振器的選擇 48 4.2.2 螺旋共振器的耦合 48 4.2.3 饋入的品質因子(Qe) 50 4.3 濾波器結構圖及晶片圖 51 4.4 模擬與量測結果 54 4.5 問題討論與結論 55 第五章 結論 57

    [1]IEEE 802.15 WPAN task group 3c (TG3c) millimeter wave alternative PHY. [Online]. Available http://www.ieee802.org/15/pub/TG3c.html.
    [2]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2000.
    [3]L. K. Yeh, C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “A 24-/60-GHz CMOS on-chip dual-band bandpass filter using trisection dual-behavior resonators,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1373-1375, Dec. 2008.
    [4]C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators based on stepped-impedance stubs and different-length stubs,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1034-1044, Mar. 2004.
    [5]J. Shi, J. X. Chen, and Q. Xue, “A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines,” IEEE Microwave Wireless Components Lett., vol. 17, no. 6, pp. 430-432, Jun. 2007.
    [6]G . Zhang, F. Huang, and M. J. Lancaster, “Superconducting spiral filters with quasi-elliptic characteristic for radio astronomy,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 947-951, Mar. 2005.
    [7]C. G . Montgomery, R. H. Dicke, and E. M. Purcell, Principle of Microwave Circuits, McGraw-Hill, New York, 1948, ch. 4.
    [8]C. Y. Tan, L. Chen, J. Lu, X. S. Rao, and C. K. Ong, “Cross-coupled dual-spiral high-temperature superconducting filter,” IEEE Microwave and Wireless Components Lett., vol. 13, no. 6, Jun. 2003.
    [9]L. Chen, C. Y. Tan, J. Lu, C. K. Ong, and B. T. G. Tan “High-temperature superconducting dual-spiral resonators and their application in filter miniaturization,” Supercond. Sci. Technol,. 13 (2000), pp. 368-372.
    [10]Z. Ma, T. Kawaguchi, and Y. Kobayashi, “Miniaturized high-temperature superconductor bandpass filters using microstrip S-type spiral resonators,” IEICE Trans. Electron., vol. E88-C, no. 1, pp. 57-61, Jan. 2005.
    [11]G. Zhang, M. J. Lancaster, and F. Huang, “A high-temperature superconducting bandpass filter with microstrip quarter-wavelength spiral resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, Feb. 2006.
    [12]J. Loubert, “Spiral microstrip resonators for narrow-stopband filters”, IEE Proc.-Microw. Antennas Propag., vol. 150, no. 6, Dec. 2003.
    [13]F. Huang, “Ultra-compact superconducting narrow-band filters using single- and twin-spiral,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, Feb. 2003.
    [14]F. Huang, L. Yue, and D. Gulati “Compact copper microstrip filters with spiral resonators,” Microwave and Optical Technology Lett., vol. 42, no. 6, Sep. 2004.
    [15]P. Wang, L. Chen, C. Y. Tan, and C. K. Ong, “Analysis of quality factors of spiral resonators,” Microwave and Optical Technology Lett., vol. 48, no. 3, Mar. 2006.
    [16]Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J. O. Plouchart, R. A. Wachnik, T. J. King, and C. Hu, “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 38, no. 38, pp. 419-426, Mar. 2003.
    [17]J. N. Burghartz, D. C. Edelstein, M. Soyuer, H. A. Ainspan, and K. A. Jenkins, “RF circuit design aspects of spiral inductors on Silicon”, IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2028-2034, Dec. 1998.
    [18]Bahl, I. J. , Lumped Elements for RF and Microwave Circuits, Artech House, 2003

    下載圖示 校內:2010-08-26公開
    校外:2010-08-26公開
    QR CODE