簡易檢索 / 詳目顯示

研究生: 王雅蘘
Wang, Ya-Siang
論文名稱: 臺灣南部二重溪層沉積物晚成岩硫複鐵礦與菱硫鐵礦之電子顯微研究
Late-diagenetic greigite and smythite in sediments from Erchungchi Formation, southern Taiwan: An electron microscopic study
指導教授: 江威德
Jiang, Wei-Teh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 207
中文關鍵詞: 晚成岩作用硫化鐵結核電子背向散射繞射硫複鐵礦菱硫鐵礦
外文關鍵詞: late diagenesis, iron-sulfide nodules, EBSD, greigite, smythite
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鐵礦物生成於海洋沉積物早成岩、晚成岩或變質作用,常為探討流體氧化還原條件和鐵硫循環與反應的重要指標,硫複鐵礦為其中硫化反應過程中常見之重要攜磁產物,前人X光繞射、磁學性質和有限電子顯微分析顯示早成岩硫複鐵礦形成富含缺陷之次微米晶體集合體;菱硫鐵礦亦具亞鐵磁性,罕見於文獻報導,多數經由低溫熱液礦化作用生成,可由硫複鐵礦、四方硫鐵礦、磁黃鐵礦或菱鐵礦轉變生成,但亦見於富含有機質黏土岩成岩作用,惟其生成模式與意義尚待探索。本研究以高解析度掃描式電子顯微鏡,配合X光能量分散光譜及電子背向散射繞射,分析臺灣南部二重溪層泥質粉砂至極細砂岩中之硫化鐵礦物,探討硫複鐵礦與菱硫鐵礦的成岩生長機制及其意義。
    硫化鐵礦物充填植物炭屑孔隙、生痕孔洞或岩層裂隙,膠結矽酸鹽碎屑物及有孔蟲殼體,形成數毫米至數公分之粒狀、棒狀或板狀結核,以硫複鐵礦和菱硫鐵礦為主要組成。炭屑硫化鐵結核局部含有直徑<10 μm黃鐵礦莓狀體和些微氧化之次微米細粒硫複鐵礦,構成塊狀集合體,其孔隙邊緣生成粒徑數微米至20 μm之罕見粗粒硫複鐵礦晶粒,多與菱硫鐵礦交錯生長,形成粒徑約50 μm之集合體,生痕化石棒狀及裂隙充填板狀結核與炭屑結核相同地以此種集合體為主要組成。X光能量分散光譜定量分析顯示彼等硫複鐵礦及菱硫鐵礦成分分別符合Fe3S4及Fe9S11,電子背向散射繞射分析亦分別顯示符合兩礦物之等軸和六方晶胞特徵,單一硫複鐵礦-菱硫鐵礦集合體內之硫複鐵礦具有單晶特性,菱硫鐵礦以四個不同晶體方位與之交生,其板狀晶束呈約120度交角向外延伸,於試片呈現特殊切面外形,與相鄰集合體構成鑲嵌組織;菱硫鐵礦〈001〉及〈100〉分別平行於硫複鐵礦單晶之〈111〉及〈110〉,證實兩礦物順構衍生關係。結核內部之片狀矽酸鹽解理間隙、有孔蟲殻體孔隙和石英及鈉長石晶粒裂隙常見為硫複鐵礦及菱硫鐵礦所充填或取代,結核內部孔隙外緣和硫複鐵礦-菱硫鐵礦集合體邊界和孔隙亦常見蔓生菱硫鐵礦晶簇,板狀晶體延伸生長數微米至25 μm,局部呈現六方板狀晶形。此外,亦可見硫複鐵礦-菱硫鐵礦集合體局部為塊狀黃鐵礦或白鐵礦或細粒含砷黃鐵礦所取代。
    上述結果暗示硫複鐵礦-菱硫鐵礦集合體乃取代早成岩硫化鐵結核細粒單硫化鐵礦物之產物,菱硫鐵礦與之順構磊晶交互生長或蔓生於集合體外緣和填隙。此種成岩硫複鐵礦-菱硫鐵礦集合體尚少見於文獻,推測其生成可能侷限於保存有早成岩硫化鐵結核之沉積物,提供局部微觀化學條件,與後期還原性流體作用。本研究以顯微分析實證增進瞭解硫複鐵礦和菱硫鐵礦之晚成岩生成特性、機制與條件,所呈現不同成岩階段產物共存之現象,可為後續解讀硫化鐵礦物分布及其指標意義的重要參考。

    Iron-sulfide nodules in siltstones from the Tsengwen-chi section of Erchungchi Formation, southern Taiwan were analyzed by scanning electron microscopy including backscattered electron imaging (BEI), x-ray energy-disperive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques in order to identify growth relationships and formation modes of iron-sulfide minerals. BEI-EDS data showed that greigite and smythite are the main constituents of iron-sulfide minerals occupying pore spaces of charcoal debris, burrows, and rock fissures. Greigite and smythite crystals up to 20 μm in size were found to form rossete-like intergrowths with jigsaw-like contacts and occur with EBSD-verified topotaxial and/or epitaxial relationships having smythite 〈001〉 and 〈100〉 parallel to greigite 〈111〉 and 〈110〉, respectively. Partial replacement of aggregates of submicron-sized greigite by coarse-grained greigite-smythite intergrowths and overgrowth of smythite druses on both types of sulfide aggregates sporadically occurred in iron-sulfide nodules. Greigite-smythite intergrowths were locally replaced by pyrite and macarsite. In addition, silicate debris enclosed within iron-sulfide nodules were locally fractured with fissures infilled by greigite-smythite aggregates. The result implies that the unusally coarse-grained Tsengwen-chi greigite-smythite aggregates were formed by interactions between reducing fluids and early diagenetic monosulfide nodules that had provided chemical microenvironments favorable for greigite recrystallization and smythite crystallization at low temperatures. The finding of two different stages of diagenetic iron sulfides in single nodules may provide an important clue for subsequent geological interpretations of iron-sulfide formation and distribution in the region.

    摘要 I Extended Abstract III 致謝 IX 目錄 XI 表目錄 XIV 圖目錄 XVI 第1章、 緒論 1 1.1. 硫化鐵礦物 1 1.1.1. 硫化鐵礦物的生成 3 1.1.2. 硫複鐵礦 7 1.1.3. 菱硫鐵礦 9 1.2. 臺灣南部硫化鐵礦物研究 14 1.3. 研究動機與目的 17 第2章、 地質背景與採樣 18 2.1. 地質概述 18 2.2. 地層系統比對 22 2.3. 樣本採集 25 第3章、 研究方法 28 3.1. 實驗流程 28 3.2. 試片製作及處理 29 3.3. 掃描式電子顯微鏡 30 3.3.1. 背向散射電子成像(BEI) 31 3.3.2. X光能量分散光譜儀(EDS) 31 3.3.3. 電子背向散射繞射(EBSD) 33 3.3.4. 礦物相鑑定 36 第4章、 研究結果 37 4.1. 植物炭屑硫化鐵結核 39 4.1.1. 硫化鐵礦物組成與碳化植物碎屑接觸關係 40 4.1.2. 硫複鐵礦與菱硫鐵礦特徵 41 4.1.3. 黃鐵礦與白鐵礦特徵 45 4.2. 生痕化石硫化鐵結核 80 4.2.1. 硫化鐵礦物組成與矽酸鹽碎屑接觸關係 81 4.2.2. 硫複鐵礦與菱硫鐵礦特徵 82 4.2.3. 黃鐵礦與白鐵礦特徵 84 4.3. 裂隙充填硫化鐵結核 105 4.3.1. 硫化鐵礦物組成與矽酸鹽碎屑接觸關係 106 4.3.2. 硫複鐵礦與菱硫鐵礦特徵 107 4.3.3. 黃鐵礦與白鐵礦特徵 109 4.4. 硫複鐵礦與菱硫鐵礦之背向散射繞射晶相分析 125 第5章、 討論 136 5.1. 結核之形成 136 5.1.1. 植物炭屑硫化鐵結核 139 5.1.2. 生痕化石硫化鐵結核 144 5.2. 硫複鐵礦-菱硫鐵礦轉變之機制 149 5.3. 硫化鐵結核中的晚成岩作用 152 5.3.1. 晚成岩作用證據 152 5.3.2. 硫化鐵礦物生成時序關係 154 5.3.3. 影響因素 155 第6章、 結論 156 參考文獻 157 附錄一、硫複鐵礦之定量分析結果 169 附錄二、硫複鐵礦-菱硫鐵礦之定量分析結果 174 附錄三、菱硫鐵礦之定量分析結果 195 附錄四、黃鐵礦之定量分析結果 196 附錄五、白鐵礦之定量分析結果 198 附錄六、二硫化鐵之定量分析結果 201 附錄七、X光粉末繞射分析結果 202

    Allen, R. E., 2002. Role of diffusion-precipitation reactions in authigenic pyritization. Chemical Geology, v. 182, p. 461-472.
    Altschuler, Z., Schnepfe, M., Silber, C., Simon, O., 1983. Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science, 221, 221-227.
    Baird, G. C., Brett, C. E., 1991. Submarine erosion on the anoxic sea floor: stratinomic, palaeoenvironmental, and temporal significance of reworked pyrite-bone deposits. In: Tyson, R. V., and Pearson, T. H., eds., Modern and Ancient Continental Shelf Anoxia. Geological Society of London, Special Publication, p. 233-257.
    Ben-Yaakov, S., 1973. pH buffering of pore water of recent anoxic sediments. Limnology and Oceanography, 18 (1), 86-94.
    Bennett, C. E. G., Graham, J., Thornber, M. R., 1972. New observations on natural pyrrhotites. Pare I. Mineragraphic techniques. Am. Mineral., 57, 445-462.
    Benning, L. G., Wilkin, R.T., Barnes, H.L., 2000. Reaction pathways in the Fe–S system below 100 °C. Chem. Geol, 167, 25-51.
    Berner, R. A., 1964. Iron Sulfides Formed from aqueous solution at low temperatures and atmospheric pressure. J. Geol., 72, 293-306.
    Berner, R. A., 1970. Sedimentary pyrite formation. Am. J. Sci., 268, 1-23.
    Berner, R. A., 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 48, 605-615.
    Bonev, I. K., Khrischev, K. G., Neikov, H. N., Georgiev, V. M., 1989. Mackinawite and greigite in iron sulphide concretions from Black Sea sediments. Comptes rendus de l'Académie bulgare des Sciences, 42, 97-100.
    Brett, C. E., Allison, P. A., 1998. Paleontological approaches to the environmental interpretation of marine mudrocks. In Schieber, J., Zimmerle, W., and Sethi, P., eds., Shales and Mudstones. Schweizerbart, Stuttgart, p. 301-349.
    Briggs, D. E. G., Bottrell, S. H., Raiswell, R., 1991. Pyritization of soft-bodied fossils: Beecher's Trilobite Bed, Upper Ordovician, New York State. Geology, v. 19, p. 1221-1224.
    Brock, F., Parkes, R. J., Briggs, D. E. G., 2006. Experimental pyrite formation associated with decay of plant material. Palaios, v. 21, p. 499-506.
    Bromley, R. G., 1996. Trace Fossils. Chapman & Hall, London, p. 361.
    Brostigen, G., Kjekshus, A., Rømming, C., 1973. Compounds with the marcasite type crystal structure VIII. Redetermination of the prototype. Acta Chem. Scand., 27, 2791–2796.
    Bruker, 2011. Combined EBSD and EDS analysis: Advances in modern materials characterization. Gert Nolze, Bruker Nano, Berlin, EBSD/EDS Webinar.
    Canfield, D. E., Raiswell, R., Bottrell, S. H., 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292, 659-683.
    Chang, L., Rainford, B. D., Stewart, J. R., Ritter, C., Roberts, A. P., Tang, Y., Chen, Q., 2009. Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. J. Geophys. Res., 114, doi:10.1029/2008JB006260.
    Castaing, R., 1951. Application of electron probes to local chemical and crystallographic analysis. Thesis (Ph. D), University of Paris.
    Chen, W. S., Ridgway, K. D., Horng, C. S., Chen, Y. G., Shea, K. S., Yeh, M. G., 2001. Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan: GSA bulletin, v.113, no.10; p. 1247-1271.
    Chen, P. H., Huang, C. Y., Huang, T. C., Tsai, L. P., 1977a. A study of the late Neogene marine sediments of the Chishan area, Taiwan: paleomagnetic stratigraphy, biostratigraphy, and paleoclimate. Mem. Geol. Soc. China, 2, 169-190.
    Chen, P. H., Huang, T. C., Huang, C. Y., Jiang, M. J., Lo, S. L., Kuo, C. L., 1977b. Paleomagnetic and coccolith stratigraphy of Plio-Pleistocene shallow marine sediments, Chuhangkeng, Miaoli. Petrol. Geol. Taiwan, 14, 219-239.
    Chen, W. S., Ridgway, K. D., Horng, C. S., Chen, Y. G., Shea, K. S., Yeh, M. G., 2001. Stratigraphyic architecture, magnetostratigraphy, and incised-valley systems of the Plio-Pleistocene collisional marine foreland basin of Taiwan. Geol. Soc. Am. Bull., 113, 1249-1271.
    Chi, W. R., 1978. The late Neogene nannobiostratigraphy in the Tainan foothills region, southern Taiwan. Petroleum Geology of Taiwan, 15, p. 89-125.
    Chi, W. R., 1980. Calcareous nannoplankton biostratigraphic study and correlation of the late Neogene sequence in the Chiayi and Hsinying foothills, southern Taiwan. Proc. Geol. Soc. China, 23, 16-28.
    Chi, W. R., Namson, J., Mei, W. W., 1980. Calcareous nannoplankton biostratigraphy of the late Neogene sediments exposed along the Hsiukuluanchi in the Coastal Range, eastern Taiwan. Petrol. Geol. Taiwan, 17, 75-87.
    Chi, W. R., Huang, H. M., 1981. Nannobiostratigraphy and paleoenvironments of the late Neogene sediments and their tectonic implications in the Miaoli area, Taiwan. Petrol. Geol. Taiwan, 18, 111-129.
    Chi, W. R., Namson, J., Suppe, J., 1981. Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan. Mem. Geol. Soc. China, 4, 155-194.
    Chou, J. T., 1971. A preliminary study of the stratigraphy and sedimentation of the mudstone formations in the Tainan area, southern Taiwan. Petroleum Geology of Taiwan, 8, 187-219.
    Chukhrov, F. V., Genkin, A. D., Sobolena, S. V., Vasova, G. V., 1965. Smythite from the iron-ore deposits of the Kerch Peninsula. Geochem. Intl., 2, 372-381.
    Covey, M., 1984. Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petrol. Geol. Taiwan, 20, 53-83.
    Covey, M., 1986. The evolution of foreland basins to steady state: Evidence from the western Taiwan foreland basin. International Association of Sedimentologists Special Publication., 8, 77-90.
    Erd, R. C., Evans, Jr., H. T., Richter, D. H., 1957. Smythlte, a new iron sulfide, and associated pyrrhotite from Indiana. Am. Mineral., v. 42, nos. 5-6, p. 309-333.
    Finklea III., S. L., Cathey, L., Amma, E. L., 1976. Investigation of the bonding mechanism in pyrite using the Mössbauer effect and X-ray crystallography. Acta Cryst., A32, 529-537.
    Fleet, M. E., 1982. Synthetic Smythite and Monoclinic Fe3S4. Phys. Chem. Minerals, 8, 241-246.
    Florindo, F., Sagnotti, L., 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophys. J. Int., 123, 340-354.
    Florindo, F., Karner, D. B., Marra, F., Renne, P. R., Roberts, A. P., Weaver, R., 2007. Radioisotopic age constraints for Glacial Terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth Planet. Sci. Lett., 256, 61-80.
    Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43, 1075-1090.
    Fu, Y., Von Dobeneck, T., Franke, C., Heslop, D., Kasten, S., 2008. Rock magnetic identification and geochemical process models of greigite formation in Quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A). Earth Planet. Sci. Lett., 275, 233-245.
    Furukawa, Y., Barnes, H. L., 1994. Replacement mechanisms among iron sulphide minerals. Mineral. Mag., 58, 299-300.
    Furukawa, Y., Barnes, H. L., 1995. Reactions forming pyrite from precipitated amorphous ferrous sulfide, In: Vairavamurthy, M. A., Schoonen, M. A. A. (Eds.), Geochemical Transformations of Sedimentary Sulfur. ACS Publications, Washington, D.C., pp. 194-205.
    Furukawa, Y., Barnes, H. L., 1996. Reactions forming smythite, Fe9S11. Geochim. Cosmochim. Acta, 60, 3581–3591.
    Grimes, S. T., Brock, F., Rickard, D., Davies, K. L., Briggs, D. E. G., Edwards, D., Parkes, R. J., 2001. Understanding fossilization: experimental pyritization of plants. Geology, 29, 123–126.
    Grimes, S. T., Davies, K. L., Butler, I. B., Brock, F., Edwards, D., Rickard, D., Briggs, D. E. G., Parkes, R. J., 2002. Fossil plants from the Eocene London Clay: the use of pyrite textures to determine the mechanism of pyritization. Journal of the Geological Society, London, Vol. 159, 2002, pp. 493–501.
    Hoffmann, V., Stanjek, H., Murad, E., 1993. Mineralogical, magnetic and Mössbauer data of smythite. Studia Geoph. Geod., 37, 366-381.
    Horng, C. S., Chen, J. C., Lee, T. Q., 1992a. Variations in magnetic minerals from two Plio-Pleistocene marine-deposited sections, southwestern Taiwan. Journal of the Geological Society of China, Vol. 35, No. 4, P. 323-335.
    Horng, C. S., Laj, C., Lee, T. Q., Chen, J. C., 1992b. Magnetic Characteristics of Sedimentary Rocks from the Tsengwen-chi and Erhjen-chi Sections in Southwestern Taiwan. TAO, Vol. 3, No. 4, 519-532.
    Horng, C. S., Shea, K. S., 1994. Study of nannofossil biostratigraphy in the eastern part of the Erhjen-chi section, southwestern Taiwan. Spec. Pub. Cent. Geol. Surv., 8, 181-204.
    Horng, C. S., Shea, K. S., 1996. Dating of the Plio-Pleistocene rapidly deposited sequence based on integrated magneto-biostratigraphy: a case study of the Madagida-chi section, Coastal Range, eastern Taiwan. J. Geol. Soc. China, 39, 31-58.
    Horng, C. S., Shea, K. S., 1997. Magnetobiostratigraphy of the Mawu-chi section, southern Coastal Range, eastern Taiwan. J. Geol. Soc. China, 40, 339-362.
    Horng, C. S., Torii, M., Shea, K. S., Kao, S. J., 1998. Inconsisten magnetic polarities berween greigite- and pyrrhotite/magnetite-bearing marine sedimnts from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164, 467-481.
    Horng, C. S., Shea, K. S., Lee, J. C., 1999. Magnetobiostratigraphy of the Sanfu-chi section in the Coastal Range of eastern Taiwan: a new result. J. Geol. Soc. China, 42, 613-629.
    Hunger, S., Benning, L.G., 2007. Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem. Trans, 8:1. doi:10.1186/1467-4866-8-1.
    Huntgen, M. T., Lyons, T. W., Ingall, E. D., Cruse, A. M., 1999. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformation: examples from Effingham Inlet, Orca Basin, and the Black Sea. Am. J. Sci., 299, 556-588.
    Imai, N., Mariko, T., Shiga, Y., Icbige, Y., 1976. Smythite in the copper sulphide ores from the Kamaishi Mine, Iwate Prefecture, Japan. J. Japan Assoc. Mineral., 71, 255-263.
    Jiang, W.-T., Horng, C.-S., Roberts, A.P., Peacor, D.R., 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth Planet. Sci. Lett., 193, 1-12.
    Jover, O., Rochette, P., Lorand, J. P., Maeder, M., Bouchez, J. L., 1989. Magnetic mineralogy of some granites from the French Massif Central: Origin of their low-field susceptibility. Phys. Earth Planet. Intl., 55, 79-92.
    Kao, S. J., Horng, C. S., Roberts, A. P., Liu, K. K., 2004. Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203, p. 153-168.
    Kenrick, P., Edwards, D., 1988. The anatomy of Lower Devonian Gosslingia breconensis Heard based on pyritized axes, with some comments on the permineralization process. Botanical Journal of the Linnean Society, v. 97, p. 95-123.
    Korolev, D. F., Kozerenko, S. V., 1965. Dokl. Acad. Sci. SSSR, 165, 194.
    Krs, M., Novak, F., Krosova, M., Pruner, P., Kuoklikova, L., Jansa, J., 1992. Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krusne hory Piedmont, Bohemia. Phys. Earth Planer. Intl., 70, 273-287.
    Krupp, R. E., 1989. Paragenesis and conditions of formation of the Moschellandsberg mercury deposit, SW Germany. Mineral, Deposira 24, 69-76.
    Krupp, R. E., 1991. Smythite, greigite, and mackinawite: New observations on natural low-temperature iron sulfides. Source, Transport and Deposition of Metals (ed. M. Pagel and J. L. Leroy), Balkema Rotterdam, pp. 193-195. Balkema.
    Krupp, R. E., 1994. Phase relations and phase transformations between the low-temperature iron sulfides mackinawite, greigite, and smythite. Eur. J. Mineral., 6, 265-278.
    Larrasoaña, J.C., Roberts, A.P., Musgrave, R.J., Gràcia, E., Piñero, E., Vega, M., Martínez-Ruiz, F., 2007. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet. Sci. Lett., 261, 350-366.
    Lee, T. Q., Chi, W. R., Kissel, C., Barrier, E., 1988. Magnetic polarity zonation of two sedimentary rock sequences in the middle and southern parts of eastern Coastal Range, Taiwan. Acta Geol. Taiwanica, 26, 179-192.
    Lee, T. Q., Lue, Y. T., Chi, W. R., Teng, L. S., 2002. Paleomagnetic study of the Kuanyinshan and Tanawan formations, northern Taiwan. West. Paci. Earth Sci., 2, 27-36.
    Lein, A. Y., Sidorenko, G. A., Volkov, I. I., Shevchenko, A. Y., 1978. Diagenetic mackinawite, melnikovite (greigite) and pyrite in sediments of the Trans-Pacific profile and the Gulf of California. Doklady of the Academy of Sciences of the USSR. Earth Science Sections, 238, 167-169.
    Lennie, A. R., Redfern, A. T., Champness, P. E., Stoddart, C. P., Schofield, P. F., Vaughan, D. J., 1997. Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. Am. Mineral., 82, 302-309.
    Mlowe, S., Osman, N. S. E., Moyo, T., Mwakikunga, B., Revaprasadu, N., 2017. Structural and gas sensing properties of greigite (Fe3S4) and pyrrhotite (Fe1-xS) nanoparticles. Materials Chemistry and Physics, 198, 167 – 176.
    Neretin, L. N., Böttcher, M. E., Jørgensen, B. B., Volkov, I. I., Lüschen, H., Hilgenfeldt, K., 2004. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochim. Cosmochim. Acta, 68, 2081-2093.
    Nickel, E. H., 1972. Nickeliferous smythite from some Canadian occurrences. Canadian Mineralogist, 11, 514-519.
    Nickel, E. H., Ross, J. R., Thomber, M. R., 1974. The supergene alteration of pyrrhotite-pentlandite ore at Kambalda, Western Australia. Econ. Geol., 69, 93-107.
    Parratt, R.L., Kullerud, G., 1979. Sulfide minerals in Coal Bed V, Minnehaha mine, Sullivan County, Indiana. Mineral. Deposita, 14: 195-206.
    Patterson, G. C., Watkinson, D. H., 1984. Metamorphism and supergene alteration of Cu-Ni sulfides, Thierry Mine, Northwestern Ontario. Canadian Mineral., 22, 13-21.
    Pye, K., 1981. Marshrock formed by iron sulphide and siderite cementation in saltmarsh sediments. Nature, 294, 650-652.
    Pye, K., 1984. SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England. Mar. Geol., 56, 1-12.
    Querol, X., Chinchon, S., Lopez-Soler, A., 1989. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. International Journal of Coal Geology, Volume 11, Issue 2, Pages 171-189.
    Raiswell, R., 1993. Kinetic controls on depth variations in localised pyrite formation. Chemical Geology, v. 107, p. 467-469.
    Raiswell, R., Whaler, K., Dean, S., Coleman, M. L., Briggs, D. E. G., 1993. A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Marine Geology, v. 113, p. 89 – 100.
    Rickard, D. T., 1968. Synthesis of smythite - rhombohedral Fe3S4. Nature, 218, 356-357.
    Rickard, D. T., 1969. The chemistry of iron sulphide formation at low temperatures. Stockholm Contrib. Geol., 20, 67-95.
    Rickard, D. T., 1975. Kinetics and mechanism of pyrite formation at low temperatures. Am. J. Sci., 275, 636-652.
    Rickard, D., 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochim. Cosmochim. Acta, 61, 115-134.
    Rickard, D., Luther, G. W., 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochim. Cosmochim. Acta, 61, 135-147.
    Rickard, D., Luther, G.W., III., 2007. Chemistry of iron sulfides. Chemical Reviews, 107(2), 514-62.
    Roberts, A. P., Turner, G. M., 1993. Diagenetic formation of ferromagnetic iron sulphide minerals in rapidly deposited marine sediments, New Zealand. Earth Planet. Sci. Lett., 115, 257-273.
    Roberts, A. P., Weaver, R., 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett., 231, 263-277.
    Roberts, A. P., Chang, L., Rowan, C. J., Horng, C. S., Florindo, F., 2011. Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys., 49, RG1002.
    Rowan, C. J., Roberts, A. P., 2005. Tectonic and geochronological implications of variably timed magnetizations carried by authigenic greigite in marine sediments from New Zealand. Geology, 33, 553-556.
    Rowan, C. J., Roberts, A. P., Broadbent, T., 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett., 277, 223-235.
    Sagnotti, L., Roberts, A. P., Weaver, R., Verosub, K. L., Florindo, F., Pike, C. R., Clayton, T., Wilson, G. S., 2005. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophys. J. Int., 160, 89-100.
    Schieber, J., 2002. The Role of an Organic Slime Matrix in the Formation of Pyritized Burrow Trails and Pyrite Concretions. Palaios, v. 17, p. 104-109.
    Schoonen, M. A. A., Barnes, H. L., 1991. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C. Geochimica et Cosmochimica Acta, v. 55, p. 1495-1504.
    Schoonen, M. A. A., 2004. Mechanisms of sedimentary pyrite formation. Geological Society of America Special Paper 379, p. 117-134.
    Seilacher, A., 1964. Biogenic sedimentary structure. In: J. Imbrie and Newell (eds.), Approaches to Paleoecology, 296-316.
    Skinner, B. J., Erd, R. C., and Grimaldi, F. S., 1964. Greigite, the thio-spinel of iron; a new mineral. American Mineralogist, 49, 543-555.
    Spicer, R. A., 1991. Plant taphonomic processes, in Allison, P. A., and Briggs, D. E. G., eds., Taphonomy: Releasing the Data Locked in the Fossil Record. New York, Plenum Press, p. 71-113.
    Stach, L. W., 1957. Subsurface exploration and geology of the coastal plain region of western Taiwan. Proc. Geol. Soc. China, 1, p. 55-96.
    Sweeney, R. E., Kaplan, I. R., 1973. Pyrite framboid formation: laboratory synthesis and marine sediments. Econ. Geol., 68(5): 618-634.
    Szczepanik, P., Sawlowicz, Z., 2010. Fe–S mineralization in the Jurassic biogenic remains (Częstochowa, Poland). Chemie der Erde, 70, 77–87.
    Taylor, L. A., 1970. Smythite, Fe3+xS4, and associated minerals from the silverfields mine, cobalt, ontario. Am. Mineral., 55, 1650-1658.
    Nickel, E. H., 1972. Nickeliferous smythite from some Canadian occurrences. Canadian Mineralogist, 11, 514-519.
    Teng, L. S., 1987. Stratigraphic records of the late Cenozoic Penglaiorogeny of Taiwan. Acta Geol Taiwanica, No. 25, p. 205-224.
    Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
    Thomsen, E., Vorren, T. O., 1984. Pyritization of tubes and burrows from Late Pleistocene continental shelf sediments off north Norway. Sedimentology, v. 31, p. 481 – 492.
    Yu, S. B., Chen, H. Y., Kuo, L. C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, p. 41–59.
    van Dongen, B. E., Roberts, A. P., Schouten, S., Jiang, W.-T., Florindo, F., Pancost, R. D., 2007. Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochim. Cosmochim. Acta, 71, 5155-5167.
    Vaughan, D. J., Tossell, J. A., 1981. Electronic structure of thiospinel minerals: results from MO calculations. Am. Mineral., 66, 1250-1253.
    Virtasalo, J. J., Kotilainen, A. T., Gingras, M. K., 2006. Trace fossils as indicators of environmental change in Holocene sediments of the Archipelago Sea, northern Baltic Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 453–467.
    Virtasalo, J. J., Löwemark, L., Papunen, H., Kotilainen, A. T., Whitehouse, M. J., 2010. Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea. Journal of the Geological Society, v.167, p1185-1198.
    Virtasalo, J. J., Whitehouse, M. J., Kotilainen, A. T., 2013. Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows. Geology, 41, 39 – 42.
    Wang, H., Pring, A., Ngothai, Y., O’Neill, B., 2005. A low-temperature kinetic study of the exsolution of pentlandite from the monosulfide solid solution using a refined Avrami method. Geochimica et Cosmochimica Acta, Vol. 69, No. 2, pp. 415–425.
    Wilkin, R. T., Barnes, H. L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta, 60, 4167-4179.
    Wilkin, R. T., Arthur, M. A., Dean, W. E., 1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet. Sci. Lett., 148, 517-525.
    何春蓀(2003)。臺灣地質概論-臺灣地質圖說明書。經濟部中央地質調查所,共163頁。
    何信昌、謝凱旋、高銘健、陳華玟(2005)。五萬分之一臺灣地質圖說明書:新化(圖幅第五十號)。經濟部中央地質調查所。
    吳榮章(1982)。臺南縣龜丹溪剖面之生物地層及其沉積環境。探採研究彙報(中國石油公司),第5期,第57 – 89頁。
    吳榮章(1984)。臺南曾文溪剖面之生物地層及古沉積環境。探採研究彙報(中國石油公司),第7期,第33-51頁。
    洪奕星(1994)。台灣西部麓山帶岩石地層的研究。經濟部中央地質調查所特刊,第八號,第27 – 40頁。
    洪崇勝(1991)。台灣西南部曾文溪、二仁溪剖面磁性礦物與磁地層之研究。國立臺灣大學海洋研究所博士論文,共324頁。
    洪崇勝、謝凱旋、陳國航、高仲彥(2006)。高雄地區六龜礫岩、嶺口礫岩及大社層之磁生物地層。臺灣之第四紀第十一次研討會論文集。第79 – 80頁。
    洪崇勝、謝凱旋(2007)。臺灣第四紀磁生物地層及蓬萊造山運動事件。中央地質調查所特刊,第18號:臺灣第四紀研究─回顧與前瞻,第51-83頁。
    紀文榮(1978)。臺南縣曾文溪剖面之超微體化石研究。探採研究彙報,第1期,第45 – 59頁。
    紀文榮、黃秀美(1982)。臺南縣九層林背斜之超微體生物地層。探採研究彙報,第5期,第39 – 56頁。
    高樹基、洪崇勝、劉康克(1991)。曾文溪剖面有機碳含量與磁性礦物種類之關係。地質,11卷,2期,頁121 – 132。
    陳文山(1994)。臺灣地質之四:台灣的生痕化石。經濟部中央地質調查所。共102頁。
    陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠等編著(1994)。材料電子顯微鏡學。臺灣:國家實驗研究院儀器科技研究中心出版。
    黃立勝(1990)。臺灣西部晚新生代沉積盆地之地下溫度及地溫梯度之研究。經濟部中央地質調查所彙刊,第六號,第117 – 144頁。
    黃廷章、丁志興(1981)。臺灣晚新第三紀淺海沈積超微化石生物地層。地質,第3卷,第105 – 119頁。
    楊舜行、洪奕星(1994)。臺灣西南部麓山帶六雙─菜寮地區上新世至更新世之古沈積環境研究。經濟部中央地質調查所特刊,第八號,第41 – 63頁。
    謝凱旋、洪崇勝、何信昌、陳華玟、陳政恆(1998)。旗山圖幅。八十七年度中央地質調查所年報,第8 – 9頁。
    謝凱旋、洪崇勝(1999)。依據Pulleniatina的旋向變化劃定更新統下界-以臺灣二仁溪剖面為例。第四紀研究,第6期,第549 – 555頁。
    謝凱旋、洪崇勝(2010)。西南部麓山帶的地層系統和對比的問題。經濟部中央地質調查所編,第六屆地層研討會論文集(頁44-45)。
    謝凱旋、黃敦友(2003)。臺灣第三系的地層層序。臺灣鑛業,第55卷,第4期,第17 – 32頁。
    鍾廣吉(1991)。台南縣境內新化丘陵區之化石地質景觀及基礎地質調查。菜寮溪化石研究專輯,台南縣立文化中心,頁40 – 111。
    魏國彥(2007)。臺灣第四紀哺乳動物化石研究的回顧與前瞻。經濟部中央地質調查所特刊,第十八號,頁261 – 286,民國九十六年九月。

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE