簡易檢索 / 詳目顯示

研究生: 楊明崙
Yang, Ming-Lun
論文名稱: 新型低能隙含拉電子側基共聚物之合成及其在太陽能電池之應用
Synthesis and characterization of new low bandgap copolymers containing electron withdrawing group as a side chain for bulk heterojunction solar cells
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 137
中文關鍵詞: 低能隙共聚高分子太陽能電池
外文關鍵詞: low bandgap, copolymer, solar cells
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在於合成出具有電子予體-電子受體結構的新式低能隙共聚高分子,並將其應用在有機太陽能電池上。藉由導入拉電子基團於共軛高分子的側鏈,使得分子主鏈全部為電子予體,僅有分子側鏈為電子受體,此種分子設計除可寬化吸收光譜,使吸收波長紅位移外,更能有效使激子分離,增加載子傳輸的能力。單體Br2-Carb-NAP 分別與具有長碳側鏈的 fluorene 和 carbazole 單體共聚合,得到高分子 PF-NAP 與 PC-NAP。高分子 PF-NAP 與 PC-NAP 都具有優良的熱穩定性,其熱裂解溫度 (T5d) 分別為 431與 460 °C。由紫外光-可見光的吸收光譜可得知,在可見光範圍高分子 PF-NAP 與 PC-NAP 的最大吸收峰均在 550 nm,起始吸收波長在 690 與 710 nm,其光學能隙分別為 1.79 與 1.75 eV。在元件結構為indium tin oxide (ITO) / poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT : PSS) / active layer / Al 時,將高分子 PF-NAP 與 PC-NAP 分別混合 6,6-Phenyl C61-butyric acid methyl ester (PCBM) 以 1 : 5 比例作為主動層,可得最佳的元件光電轉換效率為 0.231% 與 1.005%。

    We have successfully synthesized two new low bandgap copolymers. One is the alternating polyfluorene copolymer (PF-NAP¬) based on dioctylfluorene and a donor-acceptor monomer with an electron-withdrawing moiety as a side chain via the Suzuki polymerization reaction. The other one is the random polycarbazole copolymer (PC-NAP) based on Br2-Carb-Benzene and a donor-acceptor monomer with an electron- withdrawing moiety as a side chain via the Yamamoto polymerization reaction. Both copolymers have excellent thermal stability. The 5% weight loss temperature (T5d) of the PF-NAP and PC-NAP are 431 and 460 °C, respectively. The resulting copolymers have low optical and electrochemical bandgaps. The optical bandgap and the electrochemical bandgap of PF-NAP are 1.79 and 1.90 eV, respectively. The optical bandgap and the electrochemical bandgap of PC-NAP are 1.75 and 1.88 eV, respectively. The bulk heterojuction polymer solar cells were fabricated with the conjugated polymers as the electron donor and 6,6-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor. The power conversion efficiencies (PCE) of the solar cells based on copolymers PF-NAP : PCBM (1:5) and PC-NAP : PCBM (1:5) are 0.231% and 1.005%, respectively, under the illumination of AM 1.5 G, 100 mW/cm2.

    總目錄 摘要......................................................I Abstract.................................................II 誌謝.....................................................IV 總目錄....................................................V 表目錄....................................................X Scheme目錄...............................................XI 圖目錄..................................................XII 第一章 緒論................................................1 1-1 前言..................................................1 1-1-1 發展再生能源的必要性.................................1 1-1-2 太陽能電池種類介紹...................................2 1-2 研究動機與目的..........................................9 第二章 理論基礎與文獻回顧...................................12 2-1 有機太陽能電池之工作原理................................12 2-2 有機太陽能電池之特性分析................................15 2-2-1 開路電壓(Open Circuit Voltage).....................16 2-2-2 短路電流(Short Circuit Current)....................16 2-2-3 填充因子(Fill Factor)..............................17 2-2-4 光電轉換效率(Power Conversion Efficiency)...........18 2-3 太陽光的頻譜照度.......................................19 2-4 有機與無機太陽能電池相異處...............................22 2-4-1 能帶理論............................................22 2-4-2 不同形態的激子......................................25 2-5 元件結構...............................................28 2-5-1 單層結構(Single Layer Device)...........................28 2-5-2 雙層異質接面結構(Bilayer Heterojunction Device)....................30 2-5-3 單層異質接面結構(Bulk Heterojunction Device)..........................32 2-6 低能隙電子予體-電子受體結構之共聚高分子...................35 2-6-1 低能隙共聚高分子.....................................35 2-6-2 能階調整與最適化.....................................38 第三章 實驗製備及分析裝置....................................40 3-1 實驗藥品及儀器.........................................40 3-1-1 藥品...............................................40 3-1-2 儀器...............................................42 3-2 有機高分子太陽能電池(Polymer solar cells)之材料製備......44 3-2-1 單體合成............................................44 3-2-1-1 電子予體(Donor)之合成............................44 3-2-1-2 電子受體(Acceptor)之合成.........................47 3-2-2 高分子共聚物合成.....................................51 3-3 結構鑑定與分析原理......................................54 3-4 高分子太陽能電池(Polymer solar cell)之元件製備...........62 第四章 結果與討論...........................................70 4-1 單體合成與結構之鑑定....................................70 4-1-1 單體合成............................................70 4-1-2 1H-NMR圖譜分析......................................71 4-1-3 元素分析............................................73 4-1-4 FT-IR分析..........................................73 4-2 高分子合成與結構之鑑定..................................74 4-2-1 高分子合成..........................................74 4-2-2 1H-NMR圖譜分析......................................75 4-2-3 元素分析............................................76 4-2-4 FT-IR分析..........................................76 4-2-5 高分子分子量的測定...................................77 4-3 熱性質分析.............................................77 4-3-1 微差掃描熱分析(DSC).................................78 4-3-2 熱重分析(TGA).......................................78 4-4 電化學性質分析.........................................79 4-4-1 循環伏安(cyclic voltammetry, CV )量測分析............79 4-4-2 能階示意圖(energy level diagram )分析...............81 4-5 光學性質分析...........................................83 4-5-1 單體溶液態的紫外-可見光(UV-Vis)吸收光譜分析............83 4-5-2 高分子薄膜態的紫外-可見光(UV-Vis)吸收光譜分析..........83 4-5-3 不同比例之高分子與PCBM的紫外-可見光(UV-Vis)吸收光譜分析....84 4-6 高分子太陽能電池元件性質分析.............................85 4-6-1 不同比例之高分子與PCBM主動層溶液(ITO / PEDOT:PSS / Polymer : PCBM / Al)......................86 4-6-2 蒸鍍不同陰極(ITO / PEDOT:PSS / PC-NAP : PCBM (1:4 ,1:5) / LiF or Ca / Al)...........................88 4-6-3 高分子PF-NAP與PC-NAP效率比較(ITO / PEDOT:PSS Polymer : PCBM (1:5) / Al).........................90 4-7 穿透式電子顯微鏡(TEM)對主動層薄膜的型態(morphology)分析...92 4-8 載子遷移率(mobility)量測分析............................95 第五章 結論...............................................127 參考文獻..................................................129 表目錄 表1-1 常見有機太陽能電池材料、效率與成本比較....................6 表2-1 各種電極的功函數[35]......................................30 表4-1 單體Br2-Carb-Benzene、Br2-Carb-NAP的元素分析結果......98 表4-2 高分子PF-NAP、PC-NAP的元素分析結果.....................99 表4-3 高分子PF-NAP與PC-NAP的分子量與分子量分布指數...........100 表4-4 高分子PF-NAP與PC-NAP的Tg(°C)與T5d(°C)之結果..........101 表4-5 高分子PF-NAP與PC-NAP的Eg(elec)、Eg(opt)之結果........102 表4-6 高分子PF-NAP與PC-NAP的UV-vis吸收光譜分析結果..........103 表4-7 不同比例之高分子PF-NAP與PCBM元件光伏特特性.............104 表4-8 不同比例之高分子PC-NAP與PCBM元件光伏特特性.............104 表4-9 不同陰極之高分子PC-NAP元件光伏特特性...................105 表4-10 不同陰極之高分子PC-NAP元件光伏特特性..................105 表4-11 高分子PF-NAP與PC-NAP元件光伏特特性...................106 表4-12 高分子P3HT、PF-NAP與PC-NAP電洞載子遷移率.............107 Scheme目錄 Scheme 3-1 Carb-Benzene合成反應..........................44 Scheme 3-2 Br2-Carb-Benzene合成反應......................45 Scheme 3-3 BNI-NAP合成反應...............................47 Scheme 3-4 Carb-NAP合成反應..............................48 Scheme 3-5 Br2-Carb-NAP合成反應..........................49 Scheme 3-6 PF-NAP合成反應................................51 Scheme 3-7 PC-NAP合成反應................................53 圖目錄 圖1-1 常見有機太陽能電池主動層材料[5]...........................5 圖1-2 Siemens公司研發出效率5%的可撓式有機太陽能電池[11]...........8 圖1-3 新型電子予體-電子受體單體.............................11 圖2-1 太陽能電池元件I-V曲線................................15 圖2-2 地球大氣層外之太陽光譜[25](由WMO(World Meteorological Organization)量測)................................21 圖2-3 受地球大氣層中的不同物質影響之實際太陽光譜[25]..............21 圖2-4 空氣質量與天頂角關係[26].................................22 圖2-5 無機半導體與金屬的界面能帶圖..........................23 圖2-6 有機半導體簡易能帶表示圖..............................25 圖2-7 (a) Frenkel excitons (b) Wannier excitons ..........27 圖2-8 單層元件結構........................................29 圖2-9 雙層異質接面元件結構.................................31 圖2-10 單層異質接面元件結構.................................33 圖2-11 電子予體(D)、電子受體(A)與電子予體-電子受體(D-A)能階...............36 圖2-12 各種常見之電子予體-電子受體低能隙共聚高分子.............38 圖2-13 共軛高分子達到低能隙方式的能階圖.......................39 圖3-1 Ferrocene 之CV圖...................................59 圖3-2 真空熱蒸鍍系統.......................................67 圖3-3 有機太陽能電池元件構造圖..............................67 圖3-4 元件製作流程圖.......................................68 圖3-5 元件製作示意圖(由成大光電所周維掦老師實驗室設計)............................69 圖3-6 元件照片............................................69 圖4-1 Carb-Benzene的1H-NMR光譜分析圖.....................108 圖4-2 Br2-Carb-Benzene的1H-NMR光譜分析圖.................108 圖4-3 BNI-NAP的1H-NMR光譜分析圖..........................109 圖4-4 Carb-NAP的1H-NMR光譜分析圖.........................109 圖4-5 Br2-Carb-NAP的1H-NMR光譜分析圖.....................110 圖4-6 Carb-Benzene與Br2-Carb-Benzene的FT-IR分析圖........111 圖4-7 BNI-NAP、Carb-NAP與Br2-Carb-NAP的FT-IR分析圖.......111 圖4-8 高分子PF-NAP的1H-NMR光譜分析圖......................112 圖4-9 高分子PC-NAP的1H-NMR光譜分析圖......................112 圖4-10 高分子PF-NAP的FT-IR分析圖...........................113 圖4-11 高分子PC-NAP的FT-IR分析圖...........................113 圖4-12 高分子PF-NAP與PC-NAP的DSC分析圖.....................114 圖4-13 高分子PF-NAP與PC-NAP的TGA分析圖.....................114 圖4-14 高分子PF-NAP的正電壓掃描CV分析圖.....................115 圖4-15 高分子PF-NAP的負電壓掃描CV分析圖.....................115 圖4-16 高分子PC-NAP的正電壓掃描CV分析圖.....................116 圖4-17 高分子PC-NAP的負電壓掃描CV分析圖.....................116 圖4-18 高分子PF-NAP與PC-NAP對PCBM的能階示意圖...............117 圖4-19 BNI-NAP、Carb-NAP與Br2-Carb-NAP溶液態(DMAc)的紫外-可見光(UV-Vis)吸收光譜圖........................................118 圖4-20 高分子PF-NAP與PC-NAP薄膜態的紫外-可見光(UV-Vis)吸收光譜圖.......................................................118 圖4-21 不同比例之高分子PF-NAP與PCBM的紫外-可見光(UV-Vis)吸收光譜圖.......................................................119 圖4-22 不同比例之高分子PC-NAP與PCBM的紫外-可見光(UV-Vis)吸收光譜圖.......................................................119 圖4-23 不同比例之高分子PF-NAP與PCBM元件電壓-電流特性曲線......120 圖4-24 不同比例之高分子PC-NAP與PCBM元件電壓-電流特性曲線......120 圖4-25 不同陰極之高分子PC-NAP與PCBM (1:4)元件電壓-電流特性曲線121 圖4-26 不同陰極之高分子PC-NAP與PCBM (1:5)元件電壓-電流特性曲線121 圖4-27 高分子PF-NAP與PC-NAP元件電壓-電流特性曲線............122 圖4-28 有機太陽能電池元件結構的能階示意圖....................123 圖4-29 高分子PC-NAP穿透式電子顯微鏡(TEM)影像圖..............124 圖4-30 PC-NAP : PCBM=1:5穿透式電子顯微鏡(TEM)細部影像圖....124 圖4-31 不同比例之高分子PC-NAP與PCBM的TEM影像圖..............125 圖4-32 高分子P3HT、PF-NAP與PC-NAP電壓-電流特性曲線..........126

    [1] 張正華,李陵嵐,葉楚平,楊平華,有機與塑膠太陽能電池,五南出版社, 2008年。
    [2] D.M. Chapin, C.S. Fuller, and G.L. Pearson, J. Appl. Phys., 1954, 25, 676.
    [3] D.M. Chapin, C.S. Fuller, and G.L. Pearson, Bell Lab. Rec., 1955, 33, 241.
    [4] B. O’Regan, and M. Grätzel, Nature, 1999, 353, 737.
    [5] S. Gunes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev., 2007, 107, 1324.
    [6] http://140.109.91.205/cht/research/DSSC.htm
    [7] S.E. Shaheen, D.S. Ginley, and G.E. Jabbour, MRS Bull., 2005, 30, 10.
    [8] S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour, Appl. Phys. Lett., 2001, 79, 2996.
    [9] J. Bharathan, and Y. Yang, Appl. Phys. Lett., 1998, 72, 2660.
    [10] C.J. Brabec, F. Padinger, J.C. Hummelen, R.A. Janssen, and N.S. Sariciftci, Synth. Met., 1999, 102, 861.
    [11] www.siemens.com
    [12] M.M. Wienk, J.M.K. Wiljan, J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, and R.A.J. Janssen, Angew. Chem. Int. Ed., 2003, 42, 3371.
    [13] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
    [14] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, Adv. Funct. Mater., 2005, 15, 1617.
    [15] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 2005, 4, 864.
    [16] S.C. Ng, H.F. Lu, H.S.O. Chan, A. Fujii, T. Laga, and K. Yoshino, Adv. Mater., 2000, 12, 1122.
    [17] Z. Bao, Z. Peng, M.E. Galvin, and E.A. Chandross, Chem. Mater., 1998, 10, 1201.
    [18] S. Son, A. Dodabalapur, A.J. Lovinger, and M.E. Galvin, Science, 1995, 269, 376.
    [19] T. Yoshihara, S.I. Druzhinin, and K.A. Zachariasse, J. Am. Chem. Soc., 2004, 126, 8535.
    [20] H. Meng, Z. Bao, A.J. Lovinger, B.C. Wang, and A.M. Mujsce, J. Am. Chem. Soc., 2001, 123, 9214.
    [21] J.J. Dittmer, E.A. Marseglia, and R.H. Friend, Adv. Mater., 2002, 17, 1270.
    [22] P. Peumans, and S.R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
    [23] H. Hoppe, and N.S. Sariciftci, J. Mater. Res., 2004, 19, 1924.
    [24] J.Y. Kim, and A.J. Bard, Chem. Phys. Lett., 2004, 383, 11.
    [25] http://www.wmo.int/pages/index_en.html
    [26] http://www.newport.com/Introduction-to-Solar-Radiation/411919/ 1033/catalog.aspx
    [27] M.G. Helander, Z.B. Wang, J. Qiu, and Z.H. Lu, Appl. Phys. Lett., 2008, 93, 19.
    [28] L.S. Park, S. Park, J. Oh, and J. Lee, Org. Electron., 2007, 8, 382.
    [29] K.P. Nayak, and N. Periasamy, Org. Electron., 2009, 10, 1396
    [30] C. Kittel, Introduction to Solid State Physics, Chapter 11, John Wiley & Sons, New York (1996).
    [31] K. Sakayori, Y. Shibasaki, and M.J. Ueda, Polym. Sci. Part A, 2005, 43, 5571.
    [32] K. Nakaya, K. Funabiki, H. Muramatsu, K. Shibata, and M. Matsui, Dyes and Pigments, 1999, 43, 235.
    [33] B.A. Gregg, MRS Bull., 2005, 30, 20.
    [34] A.K. Ghosh, and T. Feng, J. Appl, Phys, 1978, 49, 5982.
    [35] 陳建華,國立成功大學化學工程研究所,碩士論文,2003年。
    [36] C.W. Tang, Appl. Phys. Lett., 1986, 48, 183.
    [37] H.W. Kroto, J.R. Heath, S.C. O`Brien, R.F. Curl, and R.E. Smalley, Nature, 1985, 318, 162.
    [38] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, and A.B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
    [39] G. Yu, K. Pakbaz, and A.J. Heeger, Appl. Phys. Lett., 1994, 64, 3422.
    [40] J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, and C.L. Wilkins, J. Org. Chem., 1995, 60, 532.
    [41] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Science, 1995, 270, 1789.
    [42] R.A.J. Janssen, J.C. Hummelen, and N.S. Saricftci, MRS Bull., 2005, 30, 33.
    [43] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
    [44] P. Schilinsky, C. Waldauf, and C.J. Brabec, Appl. Phys. Lett., 2002, 81, 3885.
    [45] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and A.J. Heeger, Adv. Mater., 2006, 18, 572.
    [46] G. Brocks, and A. Tol, J. Phys. Chem., 1996, 100, 1838.
    [47] G. Brocks, and A. Tol, Synth. Met., 1996, 76, 213.
    [48] T. Yamamoto, Bull. Chem. Soc. Jpn., 1999, 72, 621.
    [49] T. Yamamoto, Z.H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B.L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota, and S. Sasaki, J. Am. Chem. Soc., 1996, 118, 10389.
    [50] B.L. Lee, and T. Yamamoto, Macromolecules, 1999, 32, 1375.
    [51] D.A.P. Delnoye, R.P. Sijbesma, J.A.J.M. Vekemans, and E.W. Meijer, J. Am. Chem. Soc.,1996, 118, 8717.
    [52] R. Naef, and H. Balli, Helv. Chim. Acta, 1978, 61, 2958.
    [53] H.A.M. Mullekom, J.A.J.M. Vekemans, E.E. Havinga, and E.W. Meijer, Mat. Sci. Eng. : R, 2001, 32, 1.
    [54] H.A.M. Mullekom, J.A.J.M. Vekemans, and E.W. Meijer, Chem. Commun., 1996, 18, 2163.
    [55] L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett., 2006, 88, 093511.
    [56] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater., 2006, 18, 789.
    [57] Y.T. Chang, S.L. Hsu, M.H. Su, K.H. Wei, Adv. Funct. Mater., 2007, 17, 3326.
    [58] Y.T. Chang, S.L. Hsu, G.Y. Chen, M.H. Su, T.A. Singh, W.G. D, K.H. Wei, Adv. Funct. Mater., 2008, 18, 2356.
    [59] T.E. Pickett, F.X. Roca, C.J. Richards, J. Org. Chem., 2003, 65(7), 2592.
    [60] C. Enguehard, M. Hervet, H. Allouchi, J.C. Debouzy, J.M. Leger, A. Gueiffier, Synthesis, 2001, 4, 595.
    [61] K.W. Quasdorf, M.R. Krastina, V. Petrova, N.K. Garg, J. Am. Chem. Soc., 2009, 131(49), 17748.
    [62] U.Scherf, E.J.W. List, Adv. Mater., 2002, 14, 477.
    [63] H.H. Fong, A. Papadimitratos, G.G. Malliaras, Appl. Phys. Lett., 2006, 89, 172116.
    [64] M. Chiesa, L. Burgi, J.S. Kim, R. Shikler, R.H. Friend, H. Sirringhaus, Nano. Lett., 2005, 5, 559.
    [65] T. Yohannes, F. Zhang, M. Svensson, J.C. Hummelen, M.R. Andersson, O. Inganas, Thin Solid Films, 2004, 449, 152.
    [66] C. Xia, R.C. Advincula, Macromolecules, 2001, 34, 5854.
    [67] N.S. Cho, D.H. Hwang, B.J. Jung, J. Oh, H.Y. Chu, H.K. Shim, Synth. Met., 2004, 143, 277.
    [68] H.J. Cho, B.J. Jung, N.S. Cho, J. Lee, H.K. Shim, Macromolecules, 2003, 36, 6704.
    [69] Y.S. Suh, S.W. Ko, B.J. Jung, H.K. Shim, Opt. Mat., 2002, 21, 109.
    [70] J.F. Morin, M. Leclerc, D. Ades, A. Siove, Macromol. Rapid Commun., 2005, 26, 761.
    [71] J.F. Morin, N. Drolet, Y. Tao, M. Leclerc, Chem. Mater., 2004, 16, 4619.
    [72] N. Drolet, J.F. Morin, N. Leclerc, S. Wakim, Y. Tao, M. Leclerc, Adv. Funct. Mater., 2005, 15, 1671.
    [73] 羅喜興,國立臺灣大學材料科學與工程學系,碩士論文,2007年。
    [74] E. Moore, B. Gherman, D. Yaron, J. Chem. Phys., 1997, 106, 4216.
    [75] D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski, Syn. Met., 2002, 125, 93.
    [76] J.L. Brédas, J. Cornil, A. J. Heeger, Adv. Mater., 1996, 8, 447.
    [77] A. Gadisa, W. Mammo, L.M. Andersson, S. Admassie, F. Zhang, M.R. Andersson, O. Inganäs, Adv. Funct. Mater., 2007, 17, 3836.
    [78] M.D. McGehee, Nature Photonics, 2009, 3, 250.
    [79] G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Adv. Mater., 2008, 20, 579.
    [80] B.P. Rand, D.P. Burk, S.R. Forrest, Phys. Rev., 2007, 75, 115327.
    [81] R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B.D. Boer, Polym. Rev., 2008, 48, 531.
    [82] D. Zhao, W. Tang, L. Ke, S.T. Tan, X.W. Sun, Appl. Mater. Interfaces, 2010, 2, 829.
    [83] D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Nano Lett., 2007, 7, 738.
    [84] W.H. Baek, H. Yang, T.S. Yoon, C.J. Kang, H.H. Lee, Y. S. Kim, Sol. Energy Mater. Sol. Cells, 2009, 93, 1263.
    [85] T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, T. Butler, J.H. Burroughes, F. Cacialli, J. Appl. Phys., 2003, 93, 6159.
    [86] W.J. Potscavage, A. Sharma, B. Kippelen, Accounts of Chemical Reserach, 2009, 42, 1758.
    [87] S.K.M. Jönsson, E. Carlegrim, F. Zhang, W.R. Salaneck, M. Fahlman, Jpn. J. Appl. Phys., 2005, 44, 3695.
    [88] P. Boland, K. Lee, G. Namkoong, Sol. Energy Mater. Sol. Cells, 2010, 94, 915.
    [89] D. Vacar, E.S. Maniloff, D.W. McBranch, A.J. Heeger, Phys. Rev. B, 1997, 56, 4573.
    [90] P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Adv. Mater., 2008, 20, 3516.
    [91] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater., 2008, 18, 1783.
    [92] H. Hoppe, N.S. Sariciftci, J. Mater. Chem., 2006, 16, 45.
    [93] J.S. Huang, G. Li, Y. Yang, Appl. Phys. Lett., 2005, 87, 112105.
    [94] W.D. Gill, J. Appl. Phys., 1972, 43, 5033.
    [95] T.Y. Chu, O.K. Song, Appl. Phys. Lett., 2007, 90, 203512.
    [96] Y.T. Chang, S.L. Hsu, M.H. Su, K.H. Wei, Adv. Mater., 2009, 21, 2093.
    [97] M.Y. Chang, Y.F. Chen, Y.S. Tsai, K.M. Chi, J. Electrochem. Soc., 2009, 156, B234.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE