| 研究生: |
楊明崙 Yang, Ming-Lun |
|---|---|
| 論文名稱: |
新型低能隙含拉電子側基共聚物之合成及其在太陽能電池之應用 Synthesis and characterization of new low bandgap copolymers containing electron withdrawing group as a side chain for bulk heterojunction solar cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 低能隙 、共聚高分子 、太陽能電池 |
| 外文關鍵詞: | low bandgap, copolymer, solar cells |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在於合成出具有電子予體-電子受體結構的新式低能隙共聚高分子,並將其應用在有機太陽能電池上。藉由導入拉電子基團於共軛高分子的側鏈,使得分子主鏈全部為電子予體,僅有分子側鏈為電子受體,此種分子設計除可寬化吸收光譜,使吸收波長紅位移外,更能有效使激子分離,增加載子傳輸的能力。單體Br2-Carb-NAP 分別與具有長碳側鏈的 fluorene 和 carbazole 單體共聚合,得到高分子 PF-NAP 與 PC-NAP。高分子 PF-NAP 與 PC-NAP 都具有優良的熱穩定性,其熱裂解溫度 (T5d) 分別為 431與 460 °C。由紫外光-可見光的吸收光譜可得知,在可見光範圍高分子 PF-NAP 與 PC-NAP 的最大吸收峰均在 550 nm,起始吸收波長在 690 與 710 nm,其光學能隙分別為 1.79 與 1.75 eV。在元件結構為indium tin oxide (ITO) / poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT : PSS) / active layer / Al 時,將高分子 PF-NAP 與 PC-NAP 分別混合 6,6-Phenyl C61-butyric acid methyl ester (PCBM) 以 1 : 5 比例作為主動層,可得最佳的元件光電轉換效率為 0.231% 與 1.005%。
We have successfully synthesized two new low bandgap copolymers. One is the alternating polyfluorene copolymer (PF-NAP¬) based on dioctylfluorene and a donor-acceptor monomer with an electron-withdrawing moiety as a side chain via the Suzuki polymerization reaction. The other one is the random polycarbazole copolymer (PC-NAP) based on Br2-Carb-Benzene and a donor-acceptor monomer with an electron- withdrawing moiety as a side chain via the Yamamoto polymerization reaction. Both copolymers have excellent thermal stability. The 5% weight loss temperature (T5d) of the PF-NAP and PC-NAP are 431 and 460 °C, respectively. The resulting copolymers have low optical and electrochemical bandgaps. The optical bandgap and the electrochemical bandgap of PF-NAP are 1.79 and 1.90 eV, respectively. The optical bandgap and the electrochemical bandgap of PC-NAP are 1.75 and 1.88 eV, respectively. The bulk heterojuction polymer solar cells were fabricated with the conjugated polymers as the electron donor and 6,6-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor. The power conversion efficiencies (PCE) of the solar cells based on copolymers PF-NAP : PCBM (1:5) and PC-NAP : PCBM (1:5) are 0.231% and 1.005%, respectively, under the illumination of AM 1.5 G, 100 mW/cm2.
[1] 張正華,李陵嵐,葉楚平,楊平華,有機與塑膠太陽能電池,五南出版社, 2008年。
[2] D.M. Chapin, C.S. Fuller, and G.L. Pearson, J. Appl. Phys., 1954, 25, 676.
[3] D.M. Chapin, C.S. Fuller, and G.L. Pearson, Bell Lab. Rec., 1955, 33, 241.
[4] B. O’Regan, and M. Grätzel, Nature, 1999, 353, 737.
[5] S. Gunes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev., 2007, 107, 1324.
[6] http://140.109.91.205/cht/research/DSSC.htm
[7] S.E. Shaheen, D.S. Ginley, and G.E. Jabbour, MRS Bull., 2005, 30, 10.
[8] S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour, Appl. Phys. Lett., 2001, 79, 2996.
[9] J. Bharathan, and Y. Yang, Appl. Phys. Lett., 1998, 72, 2660.
[10] C.J. Brabec, F. Padinger, J.C. Hummelen, R.A. Janssen, and N.S. Sariciftci, Synth. Met., 1999, 102, 861.
[11] www.siemens.com
[12] M.M. Wienk, J.M.K. Wiljan, J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, and R.A.J. Janssen, Angew. Chem. Int. Ed., 2003, 42, 3371.
[13] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
[14] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, Adv. Funct. Mater., 2005, 15, 1617.
[15] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 2005, 4, 864.
[16] S.C. Ng, H.F. Lu, H.S.O. Chan, A. Fujii, T. Laga, and K. Yoshino, Adv. Mater., 2000, 12, 1122.
[17] Z. Bao, Z. Peng, M.E. Galvin, and E.A. Chandross, Chem. Mater., 1998, 10, 1201.
[18] S. Son, A. Dodabalapur, A.J. Lovinger, and M.E. Galvin, Science, 1995, 269, 376.
[19] T. Yoshihara, S.I. Druzhinin, and K.A. Zachariasse, J. Am. Chem. Soc., 2004, 126, 8535.
[20] H. Meng, Z. Bao, A.J. Lovinger, B.C. Wang, and A.M. Mujsce, J. Am. Chem. Soc., 2001, 123, 9214.
[21] J.J. Dittmer, E.A. Marseglia, and R.H. Friend, Adv. Mater., 2002, 17, 1270.
[22] P. Peumans, and S.R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
[23] H. Hoppe, and N.S. Sariciftci, J. Mater. Res., 2004, 19, 1924.
[24] J.Y. Kim, and A.J. Bard, Chem. Phys. Lett., 2004, 383, 11.
[25] http://www.wmo.int/pages/index_en.html
[26] http://www.newport.com/Introduction-to-Solar-Radiation/411919/ 1033/catalog.aspx
[27] M.G. Helander, Z.B. Wang, J. Qiu, and Z.H. Lu, Appl. Phys. Lett., 2008, 93, 19.
[28] L.S. Park, S. Park, J. Oh, and J. Lee, Org. Electron., 2007, 8, 382.
[29] K.P. Nayak, and N. Periasamy, Org. Electron., 2009, 10, 1396
[30] C. Kittel, Introduction to Solid State Physics, Chapter 11, John Wiley & Sons, New York (1996).
[31] K. Sakayori, Y. Shibasaki, and M.J. Ueda, Polym. Sci. Part A, 2005, 43, 5571.
[32] K. Nakaya, K. Funabiki, H. Muramatsu, K. Shibata, and M. Matsui, Dyes and Pigments, 1999, 43, 235.
[33] B.A. Gregg, MRS Bull., 2005, 30, 20.
[34] A.K. Ghosh, and T. Feng, J. Appl, Phys, 1978, 49, 5982.
[35] 陳建華,國立成功大學化學工程研究所,碩士論文,2003年。
[36] C.W. Tang, Appl. Phys. Lett., 1986, 48, 183.
[37] H.W. Kroto, J.R. Heath, S.C. O`Brien, R.F. Curl, and R.E. Smalley, Nature, 1985, 318, 162.
[38] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, and A.B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
[39] G. Yu, K. Pakbaz, and A.J. Heeger, Appl. Phys. Lett., 1994, 64, 3422.
[40] J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, and C.L. Wilkins, J. Org. Chem., 1995, 60, 532.
[41] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Science, 1995, 270, 1789.
[42] R.A.J. Janssen, J.C. Hummelen, and N.S. Saricftci, MRS Bull., 2005, 30, 33.
[43] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
[44] P. Schilinsky, C. Waldauf, and C.J. Brabec, Appl. Phys. Lett., 2002, 81, 3885.
[45] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and A.J. Heeger, Adv. Mater., 2006, 18, 572.
[46] G. Brocks, and A. Tol, J. Phys. Chem., 1996, 100, 1838.
[47] G. Brocks, and A. Tol, Synth. Met., 1996, 76, 213.
[48] T. Yamamoto, Bull. Chem. Soc. Jpn., 1999, 72, 621.
[49] T. Yamamoto, Z.H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B.L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota, and S. Sasaki, J. Am. Chem. Soc., 1996, 118, 10389.
[50] B.L. Lee, and T. Yamamoto, Macromolecules, 1999, 32, 1375.
[51] D.A.P. Delnoye, R.P. Sijbesma, J.A.J.M. Vekemans, and E.W. Meijer, J. Am. Chem. Soc.,1996, 118, 8717.
[52] R. Naef, and H. Balli, Helv. Chim. Acta, 1978, 61, 2958.
[53] H.A.M. Mullekom, J.A.J.M. Vekemans, E.E. Havinga, and E.W. Meijer, Mat. Sci. Eng. : R, 2001, 32, 1.
[54] H.A.M. Mullekom, J.A.J.M. Vekemans, and E.W. Meijer, Chem. Commun., 1996, 18, 2163.
[55] L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett., 2006, 88, 093511.
[56] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater., 2006, 18, 789.
[57] Y.T. Chang, S.L. Hsu, M.H. Su, K.H. Wei, Adv. Funct. Mater., 2007, 17, 3326.
[58] Y.T. Chang, S.L. Hsu, G.Y. Chen, M.H. Su, T.A. Singh, W.G. D, K.H. Wei, Adv. Funct. Mater., 2008, 18, 2356.
[59] T.E. Pickett, F.X. Roca, C.J. Richards, J. Org. Chem., 2003, 65(7), 2592.
[60] C. Enguehard, M. Hervet, H. Allouchi, J.C. Debouzy, J.M. Leger, A. Gueiffier, Synthesis, 2001, 4, 595.
[61] K.W. Quasdorf, M.R. Krastina, V. Petrova, N.K. Garg, J. Am. Chem. Soc., 2009, 131(49), 17748.
[62] U.Scherf, E.J.W. List, Adv. Mater., 2002, 14, 477.
[63] H.H. Fong, A. Papadimitratos, G.G. Malliaras, Appl. Phys. Lett., 2006, 89, 172116.
[64] M. Chiesa, L. Burgi, J.S. Kim, R. Shikler, R.H. Friend, H. Sirringhaus, Nano. Lett., 2005, 5, 559.
[65] T. Yohannes, F. Zhang, M. Svensson, J.C. Hummelen, M.R. Andersson, O. Inganas, Thin Solid Films, 2004, 449, 152.
[66] C. Xia, R.C. Advincula, Macromolecules, 2001, 34, 5854.
[67] N.S. Cho, D.H. Hwang, B.J. Jung, J. Oh, H.Y. Chu, H.K. Shim, Synth. Met., 2004, 143, 277.
[68] H.J. Cho, B.J. Jung, N.S. Cho, J. Lee, H.K. Shim, Macromolecules, 2003, 36, 6704.
[69] Y.S. Suh, S.W. Ko, B.J. Jung, H.K. Shim, Opt. Mat., 2002, 21, 109.
[70] J.F. Morin, M. Leclerc, D. Ades, A. Siove, Macromol. Rapid Commun., 2005, 26, 761.
[71] J.F. Morin, N. Drolet, Y. Tao, M. Leclerc, Chem. Mater., 2004, 16, 4619.
[72] N. Drolet, J.F. Morin, N. Leclerc, S. Wakim, Y. Tao, M. Leclerc, Adv. Funct. Mater., 2005, 15, 1671.
[73] 羅喜興,國立臺灣大學材料科學與工程學系,碩士論文,2007年。
[74] E. Moore, B. Gherman, D. Yaron, J. Chem. Phys., 1997, 106, 4216.
[75] D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski, Syn. Met., 2002, 125, 93.
[76] J.L. Brédas, J. Cornil, A. J. Heeger, Adv. Mater., 1996, 8, 447.
[77] A. Gadisa, W. Mammo, L.M. Andersson, S. Admassie, F. Zhang, M.R. Andersson, O. Inganäs, Adv. Funct. Mater., 2007, 17, 3836.
[78] M.D. McGehee, Nature Photonics, 2009, 3, 250.
[79] G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Adv. Mater., 2008, 20, 579.
[80] B.P. Rand, D.P. Burk, S.R. Forrest, Phys. Rev., 2007, 75, 115327.
[81] R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B.D. Boer, Polym. Rev., 2008, 48, 531.
[82] D. Zhao, W. Tang, L. Ke, S.T. Tan, X.W. Sun, Appl. Mater. Interfaces, 2010, 2, 829.
[83] D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Nano Lett., 2007, 7, 738.
[84] W.H. Baek, H. Yang, T.S. Yoon, C.J. Kang, H.H. Lee, Y. S. Kim, Sol. Energy Mater. Sol. Cells, 2009, 93, 1263.
[85] T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, T. Butler, J.H. Burroughes, F. Cacialli, J. Appl. Phys., 2003, 93, 6159.
[86] W.J. Potscavage, A. Sharma, B. Kippelen, Accounts of Chemical Reserach, 2009, 42, 1758.
[87] S.K.M. Jönsson, E. Carlegrim, F. Zhang, W.R. Salaneck, M. Fahlman, Jpn. J. Appl. Phys., 2005, 44, 3695.
[88] P. Boland, K. Lee, G. Namkoong, Sol. Energy Mater. Sol. Cells, 2010, 94, 915.
[89] D. Vacar, E.S. Maniloff, D.W. McBranch, A.J. Heeger, Phys. Rev. B, 1997, 56, 4573.
[90] P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Adv. Mater., 2008, 20, 3516.
[91] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater., 2008, 18, 1783.
[92] H. Hoppe, N.S. Sariciftci, J. Mater. Chem., 2006, 16, 45.
[93] J.S. Huang, G. Li, Y. Yang, Appl. Phys. Lett., 2005, 87, 112105.
[94] W.D. Gill, J. Appl. Phys., 1972, 43, 5033.
[95] T.Y. Chu, O.K. Song, Appl. Phys. Lett., 2007, 90, 203512.
[96] Y.T. Chang, S.L. Hsu, M.H. Su, K.H. Wei, Adv. Mater., 2009, 21, 2093.
[97] M.Y. Chang, Y.F. Chen, Y.S. Tsai, K.M. Chi, J. Electrochem. Soc., 2009, 156, B234.