| 研究生: |
歐陽衡 Yang, Heng Ou |
|---|---|
| 論文名稱: |
硝酸羥胺水溶液之合成及常壓電解解離特性 Synthesis and Atmospheric Electrolytic Decomposition Characteristics of Hydroxylammonia Nitrate Aqueous Solutions |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | HAN 、綠色推進劑 、HAN水溶液合成 、電解解離 |
| 外文關鍵詞: | HAN-based liquid monopropellant, acid-base titration, rotary vacuum concentration, electrolysis decomposition |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝酸羥胺(hydroxylammonia nitrate, 簡稱HAN)基液態單推進劑具有較高的性能、較低的蒸氣壓、較低的熔點以及較高的化學和熱穩定性,使其成為較有潛力取代聯氨的綠色推進劑之一。本研究中我們開發利用市售原料製備高濃度硝酸羥胺水溶液之方法。合成方法以酸鹼滴定法將稀釋過的硝酸滴定至羥基銨。並且滴定過程中需將溫度控制在低溫下直至pH值2.5之滴定終點。接著利用旋轉真空濃縮法將HAN水溶液濃縮至高濃度,最終得濃度約90 wt%的HAN水溶液。製備完成後,我們通過FTIR-ATR測量其光譜,驗證HAN水溶液之組成。並且進行了各種性質量測,如重量濃度、pH值、硝酸離子濃度、導電度及熱解性質。通過測量性質得知了HAN水溶液之導電度在約1.3 g/cm3(56.06 wt%)有最大值約101 mS/cm。
測量完HAN水溶液性質後,以電解解離實驗進行HAN水溶液反應特性測試。以電壓60 V,300秒的條件對不同濃度的HAN水溶液進行電解,證實在不同濃度下存在著三種反應機制,其中以氣相溫度的反應始點決定其反應模式,例如低濃度之HAN水溶液氣相溫度反應始點約等於液相溫度;而中濃度氣相溫度則是略比液相慢一些;最後高濃度氣相溫度始點則是遠比液相溫度還要晚。此外,也針對不同電壓做討論,如40 V、30 V、20 V。60 V與40 V實驗結果大致相同,而30 V反應始點產生延遲,20 V則是無法對高濃度HAN水溶液進行電解解離。
Synthesis and the electrolytic decomposition characteristics of hydroxylamine nitrate have been discussed in this research. The synthetic method diluted nitric acid was titrated to hydroxylammonium by acid-base titration. And in the titration process, the temperature needed to be controlled at low temperature until the end of the titration of pH 2.5. The HAN aqueous solutions was made of about 90 wt% by rotary vacuum concentration. Validation of synthesized HAN properties through FTIR-ATR. The measured properties revealed that the conductivity of HAN aqueous solutions had a maximum value 101 mS/cm about 1.3 g/cm3 (56.06 wt%). Electrolysis of different concentrations of HAN aqueous solution was carried out of 60 V for 300 seconds. There were three reaction mechanisms at different concentrations. Electrolysis decomposition experiments were carried out at different voltages. The results of 60 V and 40 V were same, while the starting point of the 30 V reaction was delayed. At 20 V, the high concentration HAN aqueous solutions could not be electrolysis decomposition.
[1] H. McLean, W.D. Deininger, B.M. Marotta, R.A. Spores, R.B. Masse, T.A. Smith, M. C. Deans, J.T. Yim, G.J. Williams, J.W. Sampson, J. Martinez, E.H. Cardiff and C.E. Bacha, Green Propellant Infusion Mission Program Overview, Status, and Flight Operations, AIAA 2015-3751, 2015.
[2] K. Anflo, T. A. Grönland, G. Bergman, M. Johansson, R. Nedar, Towards green propulsion for spacecraft with ADN-Based monopropellants, AIAA 2002-3847, 2002.
[3] K.F. Mueller & K.L.Wagaman, Oxidizing agent, US Statutory Invention Registration H1768 (USH1768H), Published Jan 5, 1999.
[4] R.A. Spores, R. Masse, S. Kimbrel, C. McLean, GPIM AF-M315E Propulsion System, AIAA 2015-3573, 2013.
[5] L. Courthéoux, D. Amariei, S. Rossignol & C. Kappenstein (2006), Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants, Applied Catalysis. B: Environmental. 62(3-4), 217-225.
[6] 桂林、周勁松 (2001),硝酸羥胺的製備,化學推進與高分子材料,第4期,13-14。
[7] Y. Chang & H.P. Gregor (1981), Conversion of hydroxylamine hydrochloride to hydroxylamine nitrate by electrodialysis and water-splitting processes, Ind. Eng. Chem. Process Des. Dev. 20(2), 361–366.
[8] T. Liggett, Process for producing concentrated solutions of hydroxylammonium nitrate and hydroxylammonium perchlorate, US Patent No. US4066736A, 1978.
[9] S. Hoyani, R. Patel, C. Oommen, R. Rajeev (2017), Thermal stability of hydroxylammonium nitrate (HAN), Journal of Thermal Analysis and Calorimetry 129, 1083-1093.
[10] C.T. Mathew & H.E. Ulmer, Preparation from hydroxylammonium sulfate of alcoholic hydroxylamine solutions and of oximes, hydroxamic acids and other hydroxylammonium salts via alcoholic hydroxylamine solutions, European Patent No. EP0108294B1, 1991.
[11] M.L. Levinthal, R.L. Willer, D.J. Park & R.Bridges, Process for making high purity hydroxylammonium nitrate, US Patent No. US5266290A, 1993.
[12] W.S. Chai, K.H. Cheah, K.S. Koh, J. Chin & T.F.W.K. Chik (2016), Parametric studies of electrolytic decomposition of hydroxylammonium nitrate (HAN) energetic ionic liquid in microreactor using image processing technique, Chemical Engineering Journal 296, 19-27.
[13] W.S. Chai, Characterization & analysis on electrolytic decomposition of hydroxylammonium nitrate (HAN) ternary mixtures in microreactors, Ph.D. Thesis, University of Nottingham, 2016.
[14] T. Kuwahara, I. Nakagawa, H. Hatano, T. Onda, and M. Takizuka, Thermal decomposition characteristics of HAN composite propellant. Presented at the 33rd Joint Propulsion Conference and Exhibit, 1997.
[15] R.W. Ashcraft, S. Raman, W.H. Green (2007), Ab initio aqueous thermochemistry: Application to the oxidation of hydroxylamine in nitric acid solution. The Journal of Physical Chemistry B, 111, 11968–11983.
[16] M.M. Decker, N. Klein, E. Freedman, C.S. Leveritt, J.Q. Wojciechowski, HAN-based Liquid Gun Propellants: Physical Properties, BRL-TR-2864, 1987.
[17] K.F. Mueller, K.L. Wagaman (1999), United States Statutory Invention Registration, Reg. Number: H1768.
[18] H. Meng, P. Khare, G.A. Risha, R.A. Yetter and V. Yang, Decomposition and ignition of HAN-based monopropellants by electrolysis, AIAA 2009-451, 2009.
[19] R. Amrousse, T. Katsumi, N. Azuma, K. Hori (2017), Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up, Combustion and Flame 176, 334-348.
[20] C.H. Hwang, S.W. Baek, S.J. Cho (2014), Experimental investigation of decomposition and evaporation characteristics of HAN-based monopropellants, Combustion and Flame 161, 1109-1116.
[21] M.H. Wu & R.A. Yetter (2009), A novel electrolytic ignition monopropellant microthruster based on low temperature co-fired ceramic tape technology, Lab Chip 9, 910-916.
[22] A. Kakami, N. Yamamoto, K. Ideta, T. Tachibana (2012), Design and Experiments of a HAN-Based Monopropellant Thruster Using Arc-Discharge Assisted Combustion, Transactions of the Japan Society for Aeronautical and space Sciences, Aerospace Technology Japan, 10, (28), 13-17.
[23] D.I. Aguilar, Testing of a 1-N AF-M315E thruster, M.S. Thesis, University of Texas at El Paso, 2018.
[24] R. Grist, Design and experimental investigation of a hydroxyl ammonium nitrate based workhorse microthruster, M.S. Thesis, University of Washington, 2016.
[25] F.B. Apollo, N. Sakae, M. Haruki & A. Muneo (2010), HAN/HN-based monopropellant thrusters, IHI Engineering Review 43(1), 22-28.
[26] K. Hori, T. Katsumi, S. Sawai, N. Azuma, K. Hatai, and J. Nakatsuka, (2019), HAN-based green propellant, SHP163 – its R&D and test in space. Propellants Explos. Pyrotech. 44, 1080–1083.
[27] R.S. Jankovsky, HAN-based monopropellant assessment for spacecraft, AIAA 96-2868, 1996.
[28] N. Tanaka, T. Matsuo, K. Furukawa, M. Nishida, S. Suemori, A. Yasutake (2011), The “Greening” of spacecraft reaction control system. Mitsubishi Heavy Industries Technical Review 48 (4), 44-50.
[29] D. Meinhartdt, S. Christofferson, E Wucherer & B. Reed, Performance and life testing of small HAN thrusters, AIAA 99-2881, 1999.
[30] O.M. Morgan & D.S. Meinhardt, Monopropellant selection criteria – hydrazine and other options, AIAA 99-2595, 1991.
[31] E.J. Wucherer, S. Christofferson & B. Reed, Assessment of High performance HAN-monopropellants, AIAA 2000-3872, 2000.
[32] Y.P. Chang, E. Boyer, and K.K Kuo (2001), Combustion Behavior and Flame Structure of XM46 Liquid Propellant, Journal of Propulsion and Power 17(4), 800-808.
[33] Y.P. Chang, and K.K Kuo (2002), Assessment of Combustion Characteristics and Mechanism of Hydroxylammonium Nitrate-Based Liquid Monopropellant, Journal of Propulsion and Power 18(5), 1076-1085.
[34] Y.P. Chang, J.K. Josten, B.Q. Zhang, K.K Kuo, B.D. Reed, Combustion Characteristics of Energetic HAN/Methanol-Based Monopropellants, AIAA 2002-4032, 2002.
[35] H.S. Lee & T.A. Litzinger (2001), Thermal decomposition of HAN-based liquid propellants, Combustion and Flame 127(4), 2205-2222.
[36] H. Lee & T.A. Litzinger (2003), Chemical kinetic study of HAN decomposition, Combustion and Flame 135, 151-169.
[37] N. Klein (1990), Twenty-Seventh JANNAF Combustion Subcommittee Meeting, CPIA Publ 557(1), 443.
[38] J.C. Oxley, K.R. Brower (1988), Thermal decomposition of hydroxylamine nitrate, SPIE 872, 63.
[39] J.K. Baird, J.R. Lang, A.T. Hiatt and R.A. Frederick (2017), Electrolytic combustion in the polyvinyl alcohol plus hydroxylammonium nitrate solid propellant, Journal of Propulsion and Power 33(6), 1589-1590.
[40] R. Amrousse, K. Hori, W. Fetimi, K. Farhat (2012), HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes, Applied Catalysis B: Environmental 127, 121-128.
[41] A.L. Rheingold, J.T. Cronin, T.B. Brill, and F.K. Ross (1987), Structure of hydroxylammonium nitrate (HAN) and the deuterium homolog, Acta Cryst. C43, 402-404.
[42] G. Klingenberg, H.J. Frieske & H. Rockstroh, Electrical ignition of HAN-based liquid propellants, Final Technical Report, DAJA 45-86-C-0029, 1990.
[43] G. Klingenberg, H. Rockstroh, J.D. Knapton, J. Despirito & H.‐J. Frieske (1990), Investigation of Liquid Gun Propellants: Electrical ignition of LGP 1846, Propellants, Explos. Pyrotech. 15(3), 103–114.
[44] G.E. Dima, A.C.A. de Vooys, M.T.M. Koper (2002), Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions, Journal of Electroanalytical Chemistry 554-553, 15-23.
[45] P. Khare, V. Yang, H. Meng, G.A. Risha and R.A. Yetter (2015), Thermal and electrolytic decomposition and ignition of HAN–water solutions, Combustion Science and Technology 187, 1065-1078.
[46] L.O. Cisneros, X. Wu, W.J. Rogers, M.S. Mannan, J. Park and S.W. North (2003), Decomposition Products of 50 Mass% Hydroxylamine/Water under Runaway Reaction Conditions, Institution of Chemical Engineers 8, 121-124.
[47] R.A. Sasse, M.A. Davies, R.A. Fifer, M.M. Decker and A.J. Kotar, Density of Hydroxylammonium Nitrate Solutions, Report BRL-MR-3720, AD-A201110, 1988.
[48] R. Sasse, Analysis of Hydroxylammonium Nitrate Based Liquid Propellants, Report BRL-TR-3154, AD-A227300, 1990.
[49] H. Uramachi, D. Shiraiwa, T. Takai, N. Tanaka, T. Kaneko, K. Furukawa (2019). Green propulsion systems for satellites-development of thrusters and propulsion systems using low-toxicity propellants. Mitsubishi Heavy Industries Technical Review 56(1), 1-7.
[50] G.P. Sutton & O. Biblarz, Rocket propulsion elements 8th ed., Wiley, 2010.
[51] S.R. Vosen (1990), Hydroxylammonium Nitrate-Based Liquid Propellant Combustion – Interpretation of strand burner data and the laminar burning velocity, Combustion and Flame 82(3-4), 376-388.
[52] K.S. Koh, J. Chin, T.F. Wahida and K. Chilk (2013), Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions, Propulsion and Power Research 2(3), 194-200.
[53] R.A. Biddle, Concentration of HAN solution, Final Contract Report DAAD05-84-M-6657, 1985.
[54] World Trade Organization Technical Barriers to Trade (TBT) Committee, Standard Test Method for Mass Loss and Residue Measurement Validation of Thermogravimetric Analyzers, ASTM International, E2402-11, 2017.
[55] World Trade Organization Technical Barriers to Trade (TBT) Committee, Standard Test Methods for Loss-On-Drying by Thermogravimetry, ASTM International, E1868-10, 2015.
[56] K. Nathan and W. Koon Ng, An infra-red investigation of HAN-Based liquid propellants,.AD-A187 226, 1987.
[57] D. L. Frasco and E. L. Wangner (1959), Interpretation of the Infrared Spectra of the Solid Hydroxylammonium Halides, J. Chem. Phys 30, 1124.