| 研究生: |
卓家楓 Cho, Chia-Fong |
|---|---|
| 論文名稱: |
人類血纖維蛋白溶酶原K1-5藉由蛋白酶體和溶酶體分解路徑降低凝血酶調節素的表現 Kringle 1-5 of Plasminogen Downregulated Thrombomodulin Through Proteosome-Lysosome Degradation Pathway |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 血纖維蛋白溶酶原 、蛋白酶體 、溶酶體 、凝血酶調節素 |
| 外文關鍵詞: | thrombomodulin, lysosome, plasminogen, proteasome |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管新生的過程在人類胚胎發育時期及成人期皆可進行,許多生理及病理過程亦需要血管新生作用的參與,如:組織再生、女性生理週期及傷口癒合、腫瘤生長與轉移等,血管新生作用亦扮演重要的角色。很多研究報告指出腫瘤形成的過程中,癌細胞會分泌出促血管新生的因子,刺激新增血管的生長。Angiostatin是人類血纖維蛋白溶酶原蛋白水解後的片段,為一種內生性血管新生抑制物,且會抑制內皮細胞的增生和遷移。凝血酶調節素(thrombomodulin;簡稱TM),為一醣蛋白的接受器,TM是身體中重要的抗凝血分子,其主要功能是藉著結合凝血酶,進而限制凝血酶的促凝血活性及生理活性。
在本研究中我們利用酵母菌表現系統來表現並純化出kringle1-5 (K15)片段,其為angiostatin的一種形式。首先我們發現,加入 K15蛋白15小時後,牛動脈內皮細胞中的TM的量會降低,然而這個現象只有在內皮細胞中觀察到。在人類角質細胞、人類肺腺癌细胞或是穩定表現TM基因的人類黑色素瘤細胞中並沒有相同的作用。進一步研究K15降低TM細胞內含量的機制。於是利用各種蛋白質分解酶抑制劑並不會降低TM降解的結果,顯示出TM的降解不是藉由增加蛋白質分解酶活性而去切除細胞膜上的TM。另外使用吞噬作用的抑制劑,TM降解的現象則被抑制,而處理蛋白酶體抑制劑以及溶酶體抑制劑都能抑制TM減少的現象。同時,我們利用反轉錄酶-聚合酶連鎖反應偵測K15處理後TM的mRNA變化,發現到TM之mRNA不受影響。除此之外,我們若以PKA的抑制劑KT5720及H89前處理細胞, 結果發現都能抑制TM被降解的結果。
綜合以上的結果,我們發現K15蛋白可能是經由引發TM的內吞作用,將內皮細胞中的TM送至蛋白酶體和溶酶體進行裂解作用。不是透過活化蛋白水解酶的活性或是降低其mRNA表現所造成的現象。並且PKA可能參與在K15降低TM的過程中。
Angiogenesis plays an important role in many physiological and pathological processes, including embryonic vascular system development, wound healing, and reproductive cycle in adult female and tumorigenesis. Many reports indicate that cancer cells can secrete angiogenic factors to stimulate the growth of new blood vessels during the formation of tumor. Angiostatin, a proteolytic fragment of plasminogen, is a potent antagonist of angiogenesis and inhibitor of endothelial cell proliferation and migration. Thrombomodulin (TM) is a glycoprotein receptor and cofactor for thrombin’s activity in a physiologically important natural anticoagulant system.
In this study, we used Pichia pastoris expression system to prepare kringle 1-5 (K15) protein, a kind of angiostatin. First, we found that K15 downregulated TM expression in bovine aortic endothelial cells (BAECs) at 15 hours after treatment. The effect of K15 was endothelial cells-specific since other cell lines, such as A549 cells, HaCat cells, and A2058 cells transfected with full-length TM, had no such effect. To determine the mechanism of TM downregulation by K15, the protease inhibitors were used to inhibit this effect. The result showed that the downregulation of TM by K15 was caused by neither matrix metalloproteinases (MMPs) nor serine proteases. However, pretreatment with the internalization, proteasome or lysosome inhibitors, the expression of TM was not declined in BAECs by treatment with K15. Furthermore, the result of RT-PCR showed that the downregulation of TM expression was not due to decrease RNA expression. Additionally, pretreatment of protein kinase A (PKA) inhibitors, KT5720 and H89, could inhibit the TM downregulation by K15.
Based on these results, we suggested that K15 induced downregulation of TM expression through proteasome-lysosome degradation pathway, not by induction of protease activity or downregulation of its transcription level. Moreover PKA was shown to be involved in this pathway.
Adams J. Proteasome inhibitors as new anticancer drugs. Current Opinion in Oncology. 14, 628-634, 2002.
Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 35:1267-1276, 1987.
Burridge, K. and Wennerberg, K. Rho and Rac take center stage. Cell 116: 167–179, 2004.
Cao Y. Ji RW. Davidson D. Schaller J. Marti D. Sohndel S. McCance SG. O’Reilly MS. Llinas M. Folkman J. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. Biol. Chem. 271: 29461-29467, 1996.
Cao, Y., Chen, A., Soo, S., An, A., Ji, R., Davidson, D., Cao, Y. and Llinas, M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272: 22924-22928, 1997.
Cao, R., Wu, H., Veitonmaki, N., Linden, P., Farnebo, J., Shi, G. and Cao, Y. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA. 96: 5728-5733, 1999.
Conway EM, Boffa MC, Nowakowski B, Steiner-Mosonyi M. An ultrastructural study of thombomodulin endocytosis: internalization occurs via clathrin-coated and non-coated pits. J Cell Physiol. 151:604-612, 1992.
Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 89:652-661, 1997.
Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J Cell Physiol. 158:285-298, 1994.
Conway EM, Rosenberg RD. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol. 8: 5588-92, 1988.
DeBault LE, Esmon NL, Olson JR, and Esmon CT. Distribution of the thrombomodulin antigen in the rabbit vasculature. Lab Invest. 54:172-178, 1986.
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C and Chen ZJ Activation of the IB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell. 103, 351-361, 2000.
Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A. 78:2249-52, 1981.
Esmon CT, Esmon NL, Harris KW Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 257:7944-7, 1982.
Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 420:629-635, 2002.
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1: 27-31, 1995.
Folkman J, Haudenschild C. Angiogenesis in vitro. Nature. 288:551-556, 1980.
Folkman J. Tumor angiogenesis and tissue factor. Nat Med. 2:167-8, 1996.
Finley D, Bartel B and Varshavsky A The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitn facilitates ribosome biogenesis. Nature. 338, 394-401, 1989.
Gent J, van Kerkhof P, Roza M, Bu G, Strous GJ. Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc. Natl. Acad. Sci. USA 99, 9858–9863, 2002.
Grinnell BW, Berg DT. Surface thrombomodulin modulates thrombin receptor responses on vascular smooth muscle cells. Am J Physiol. 270:H603-9, 1996.
Gobel MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A and Byers B The yeast cell cycle gene CD34 encodes a ubiquitin-conjugating enzyme. Science 241, 1331-1335, 1988.
Geiger JH, Cnudde SE What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost. 2(1):23-34, 2004.
Han HS, Wu HL, Lin BT, Shi CS, Shi GY Effect of thrombomodulin on Plasminogen activation. Fibrinolysis and Proteolysis 14(4), 221-228, 2000.
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 9;86(3):353-64, 1996.
Hartmann-Petersen R, Seeger M, Gordon C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26-31, 2003.
Hayashi A, Seki N, Hattori A, Kozuma S, Saito T. PKCnu, a new member of the protein kinase C family, composes a fourth subfamily with PKCmu. Biochim Biophys Acta. 6:1450(1):99-106, 1999.
Hayashi T, Suzuki K. Monoclonal antibodies for human thrombomodulin which recognize binding sites for thrombin and protein C. J Biochem (Tokyo). 108:874-78, 1990.
Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. U.S.A. 92:850-4, 1995.
Herring D, Huang R, Singh M, Dillon GH, Leidenheimer NJ. PKC modulation of GABAA receptor endocytosis and function is inhibited by mutation of a dileucine motif within the receptor 2 subunit. Neuropharmacology 48:181-194, 2005.
Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble. Cancer Lett. 161:231-40, 2000.
Imada M, Imada S, Iwasaki H, Kume A, Yamaguchi H, Moore EE. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP. Dev. Biol. 122:483-91, 1987.
Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays.
Dev. Biol. 140:113-22, 1990.
Jackson CJ, Xue M, Thompson P, Davey RA, Whitmont K, Smith S, Buisson-Legendre N, Sztynda T, Furphy LJ, Cooper A, Sambrook P, March L. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen. 13(3):284-94, 2005.
Jentsch S, McGrath JP and Varshavsky A The yeast DNA repair gene RAD6 encodes a ubuquitin-conjugating enzyme. Nature 329, 131-4, 1987.
Ji WR. Castellino FJ. Chang Y. Deford ME. Gray H. Villarreal X. Kondri ME. Marti DN. Llinas M. Schaller J. Kramer RA. Trail PA. Characterization of kringle domains of angiostatin as antaonist of endothelial cell migration, an important process in angiogenesis. FASEB J. 12: 1731-1738, 1998b.
Ji WR. Barrientos LG. Llinas M. Gray H. Villarreal X. Deford ME. Castellino FJ Kramer RA Trail PA. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun. 247:414-9, 1998a.
Kennel SJ, Lankford T, Hughes B, Hotchkiss JA. Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab. Invest. 59:692-701, 1988.
Kim SJ, Shiba E, Ishii H, Inoue T, Taguchi T, Tanji Y, Kimoto Y, Izukura M, Takai S. Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res. 17:2319-23, 1997.
Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br J Haematol. 78:515-522, 1991.
Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and properties of functional domains of thrombomodulin. J Biol Chem. 262:2206-2212, 1987.
Lager DJ, Callaghan EJ, Worth SF, Raife TJ, and Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am J Pathol. 146:933-943, 1995.
Lu, H., Dhanabal, M., Volk, R., Waterman, M., Ramchandran, R., Knebelmann, B., Segal, M. and Sukhatme, V. Kringle 5 cause cell cycle arrest and apoptosis of endothelial cells. Biochem. Biophys. Res. Comm. 258: 668-673, 1999.
Liu JP. Protein C and its substrate. Mol Cell Endocrinol 116:1-29, 1996
Lentz SR, Tsiang M, and Sadler JE Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms. Blood 77: 542 – 550, 1991.
Maruno M, Yoshimine TI, kuroda R, Ishii H, and Hayakawa T. Expression of thrombomodulin astrocytomas of various malignancies and in gliotic and normal brains. J Neurooncol. 19:155-160, 1994.
Matsushita Y, Yoshiie K, Imamura Y, Ogawa H, Imamura H, Takao S, Yonezawa S, Aikou T, Maruyama I, Sato E. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone–thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer Lett. 127:195-201, 1998.
Maruyama I, Bell CE, and Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries and lymphatics, and on syncytiotrophoblast of human placenta. Journal Cell Biol. 101:363-371, 1985.
McCachren SS, Diggs J, Weinberg JB, and Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78:3128-3132, 1991.
de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. Journal of Cell Science 114, 2167-2178, 2001.
McEver R. Leukocyte interactions mediated by selectins. Thromb Haemost. 66:80-87, 1991.
Moore KL, Esmon CT, and Esmon NL Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood 73: 159 – 165, 1989.
Molinari A, Giorgetti C, Lansen J, Vaghi F, Orsini G, Faioni EM, Mannucci PM. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator in vitro and in a per fused rabbit heart model. Thromb Haemost. 69:226-232, 1992.
Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 98:6656-61, 2001.
de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem J. 290:655-659, 1993.
Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda SM, Muzykantov VR, Koval M. A novel endoctic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci. 15; 116(Pt 8):1599-609, 2003.
Mueller A, Strange PG. Mechanisms of internalization and recycling of the chemokine receptor, CCR5. Eur. J. Biochem. 271,243-254, 2004.
Newton AC. Protein kinase C: Structure, function, and regulation. J. Biol. Chem. 270: 28495-28498, 1995.
O’Reilly MS, Boehm T. Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endoststin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 88:277-285, 1997.
O’Reilly MS. Holmgren L. Shing Y. Chen C. Rosenthal RA. Moses M. Lane WS. Cao Y. Sage EH. Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by Lewis lung carcinoma. Cell. 79: 315-328, 1994.
O'Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 2:689-92, 1996.
Parkinson JF, Garcia JG, Bang NU. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem Biophys Res Commun. 169:177-183, 1990.
Patty L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J Mol Biol. 202:689-696, 1988.
Petersen T. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231:51-53, 1988.
Peterson JJ, Rayburn HB, Lager DJ, Raife TJ, Kealey GP, Rosenberg RD, Lentz SR Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol. 155:1569-75, 1999.
Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y and Lentz SR. Thrombomodulin expression by human keratinocytes. J Clin Invest. 93:1846-1851, 1994.
Richard H. Sohn, Clayton B. Deming, David C. Johns, Hunter C. Champion, Ce Bian, Kevin Gardner, and Jeffrey J. Rade Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B Blood 105: 3910 – 3917, 2005.
Rotmann A, Strand D, Martine U, Closs EI Closs Protein kinase C activation promotes the internalization of the human cationic amino acid transporter hCAT-1. J. Biol. Chem. 279: 54185-54192, 2004.
Saito Y, Tetsuka M, Li Y, Kurose H, Maruyama K. Properties of rat melanin-concentrating hormone receptor 1 internalization. Peptides 25 1597-1604, 2004.
Salazar G Gonzalez A Novel mechanism for regulation of epidermal growth factor receptor endocytosis revealed by protein kinase A inhibition. Mol Biol Cell. 13(5):1677-93, 2002.
Schenk-Braat EA, Morser J, Rijen DC Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur J Biochem. 268:5562-5569, 2001.
Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y, Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. J Biochem. 103(2):281-285, 1988.
Skalhegg BS, Tasken K. Specificity in the cAMP/PKA signaling pathway. Differential expression,regulation, and subcellular localization of subunits of PKA. Front Biosci.1 (5): D678-93, 2000.
Sugden PH, Bogoyevitch MA Intracellular signalling through protein kinases in the heart. Cardiovasc Res. 30(4):478-92, 1995.
Shinyama H, Masuzaki H, Fang H, Flier JS. Regulation of melanocortin-4 receptor signaling: agonist-mediated desensitization and internalization. Endocrinology.144 (4):1301-14, 2003.
Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepato-cellular carcinoma. Hepatology 21:1285-90, 1995.
Tarui, T., Miles, L. A., and Takada, Y. Specific interaction of angiostatin with integrin v3 in endothelial cells. J Biol Chem. 276:39562-39568, 2001.
Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196-200, 1995.
Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 152:1247-54, 2001.
Tarui T, Majumdar M, Miles LA, Ruf W, Takada Y. Plasmin-induced migration endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem. 277:33564-70, 2002.
Teasdale M, Bird C, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol Cell Biol. 72:480-488, 1994.
Uchiba M, Okajima K, Oike Y, Ito Y, Fukudome K, Isobe H, Suda T. Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ Res. 95(1):34-41, 2004.
Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks. Genes & Dev. 11: 2295-2322, 1997.
Veitonmaki N, Cao R, Wu HL, Moser TL, Li B, Pizzo SV, Zhivotovsky B, Cao Y. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer Res. 64:3679-86, 2004.
Volpert OV, Stellmach V, Bouck N. The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat. 36:119-26, 1995.
Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry 26(14):4350-4357, 1987.
Weiler-Guettler H, Aird WC, Rayburn H, Husain M, Rosenberg RD. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122:2271-81, 1996.
Wilhelm S, Wilhelm O, Schmitt M, Graff H. Inactivation of receptor bound pro-urokinase –type plasminogen activator (pro-UPA) by thrombin and thrombin/thrombomodulin complex. Biol Chem Hoppe Seyler. 375:603-608, 1994.
Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J Biol Chem. 264:10351-10353, 1989.
Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 101:1301-1309, 1998.
吳柏義 (2002) 人類血纖維蛋白溶酶原之Kringle結構區對血管新生抑制作用之研究,國立成功大學生物化學研究所碩士論文。
張智維 (2003) 人類血纖維蛋白溶酶原之Kringle結構區對血管新生之功能分析,國立成功大學生物化學研究所碩士論文。
周于嵐 (2004) 凝血酶調節素之表現與細胞生長關係之研究,國立成功大學生物化學研究所碩士論文。