簡易檢索 / 詳目顯示

研究生: 陳君函
Chen, Chun-Han
論文名稱: 榖胱甘肽對衣藻細胞週期調控之研究
Glutathione mediated cell cycle regulation in Chlamydomonas reinhardtii
指導教授: 方素瓊
Fang, Su-Chiung
共同指導教授: 張文綺
Chang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 衣藻細胞週期榖胱甘肽氧化還原狀態缺硫適應反應
外文關鍵詞: Chlamydomonas, cell cycle, glutathione, redox state, sulfur acclimation
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞週期的調控對於生物體的增生過程非常重要。本研究利用單細胞綠藻 (衣藻, Chlamydomonas reinhardtii) 為模式生物探討細胞大小的調控機制。研究中使用之smt15-1為細胞大小調控異常的小細胞突變株;由蛋白質功能性區域分析結果,推測SMT15為硫酸鹽運輸蛋白 (sulfate transporter)。本實驗利用qRT-PCR分析,得知缺硫逆境下,smt15-1無法正常調節缺硫反應機制 (sulfur acclimation response, SAC response)。進一步發現smt15-1細胞體內,累積較多硫化物代謝途徑的終產物-榖胱甘肽 (glutathione)。文獻資料指出真核生物中,榖胱甘肽會調節細胞內的氧化還原狀態 (reduction/oxidation state) ,且與細胞週期有關。本研究也觀察到榖胱甘肽含量隨衣藻細胞週期而變動。此外,還發現G1後期和S/M階段,smt15-1會累積較野生株多的榖胱甘肽。本研究因而從文獻資料及初步實驗結果,提出假說:細胞內榖胱甘肽所主導之氧化還原狀態,對衣藻細胞週期的調控非常重要。本實驗分別利用乙醯半胱胺酸 (N-acetyl-L-cysteine, 還原劑) 和順丁烯二酸二乙酯 (Diethylmaleate, 榖胱甘肽的抑制劑) 處理,進而改變細胞體內的氧化還原狀態,結果皆會影響細胞進入S/M 階段。此外,過量表達榖胱甘肽生合成基因 (glutathione synthetase) 的轉殖株,可提高榖胱甘肽含量,造成細胞分裂數增加,導致子細胞大小 (daughter cell size) 變小,此結果與smt15-1性狀相似。另外,於缺硫逆境下使用順丁烯二酸二乙酯抑制榖胱甘肽的功能基,會稍微回復芳基硫酸酯酶 (Arylsulfatase, 為SAC相關基因) 的誘導表現量,即表示smt15-1細胞內於缺硫逆境下,累積較多的榖胱甘肽會降低SAC基因的誘導表現。綜合以上結果,本研究證實SMT15可調節衣藻細胞內之榖胱甘肽含量,進一步影響缺硫反應機制及細胞分裂次數繼而改變細胞大小。

    Regulation of the cell cycle is essential to drive cell proliferation. Chlamydomonas reinhardtii is a unicellular green alga that utilizes a specialized cell cycle program, multiple-fission, for cell division. In this study, smt15-1 mutant was isolated as a cell size mutant that had defective putative sulfate transporter and aberrant cell cycle program. smt15-1 had increased amount of total glutathione and failed to fully acclimate to sulfur starvation condition. Previous studies have suggested that the GSH-mediated sub-cellular reduction/oxidation (redox) homeostasis is important for the cell cycle control in eukaryotic cells. We also observed the total glutathione content oscillated during the mitotic cell cycle in Chlamydomonas. In addition, smt15-1 mutant accumulated more glutathione than wild-type strain at late G1 and S/M phases in synchronized culture. Base on these result, we hypothesized that GSH-mediated cellular redox regulation is important for cell-cycle control in Chlamydomonas. Indeed, increased cellular reducing state by adding N-acetyl-L-cysteine (NAC) caused a delay in entry into mitosis in synchronized cultures. Additionally, depleted GSH using diethylmaleate (Et2Mal, glutathione-depleting reagent) resulted in aberrant entry into the cell cycle. Decreasing GSH levels in the smt15-1 mutant using Et2Mal under sulfur-depleted condition led to a slight increase in induction of an arylsulfatase (ARS) mRNA, indicating that accumulation of GSH in smt15-1 under sulfur-depleted condition attenuated sulfur acclimation (SAC) response. Furthermore, increasing total glutathione content by overexpressing the glutathione synthetase (GSH2) led to increase in cell division number and decrease in daughter cell size, which was reminiscent to smt15-1 mutant. In conclusion, SMT15 modulates intracellular glutathione that affects SAC response and cell division in Chlamydomonas.

    目錄 I. 緒論 1 I.1 引言 1 I.2 介紹 1 I.2.1 衣藻簡介 (Chlamydomonas reinhardtii) 1 I.2.2 細胞週期 (Cell cycle and multiple-fission cell cycle) 2 I.2.3 榖胱甘肽 (Glutathione) 3 I.2.4 smt15-1突變株的特性 6 II. 材料與方法 7 II.1 細胞培養及細胞週期同步化 7 II.2 細胞大小檢測、細胞分裂指數測定及檢查點分析 8 II.3 DNA套數及細胞分裂數分析 8 II.4 缺硫處理 9 II.5 化學方法改變細胞體內榖胱甘肽 (glutathione) 含量的策略 9 II.5.1 乙醯半胱胺酸 ( N-acetyl-L-cysteine, NAC) 9 II.5.2 順丁烯二酸二乙酯 (Diethylmaleate, Et2Mal) 10 II.5.3 丁硫氨酸 (Buthionine sulfoximine, BSO) 10 II.5.4 還原態之榖胱甘肽 (reduced L-Glutathione) 與榖胱甘肽 乙酯 (Glutathione reduced ethyl ester) 11 II.6 酵素方法測量細胞體內榖胱甘肽含量 11 II.6.1 細胞萃取液前處理 11 II.6.2 榖胱甘肽定量分析 (Total glutathione assay) 12 II.7 榖胱甘肽螢光強度定量分析 12 II.8 螢光訊號偵測榖胱甘肽 (glutathione) 於細胞內之坐落位點 13 II.8.1 7-amino-4-chloromethylcoumarin染劑 13 II.8.2 SYTOX Green Nucleic Acid染劑 13 II.9 免疫標定法偵測榖胱甘肽於細胞內坐落位點 13 II.10 DNA粗取、聚合酶鏈鎖反應及基因型檢測 14 II.11 RNA萃取、cDNA合成方法、定量聚合鏈鎖反應 15 II.12 質體萃取、限制性內切酶剪切反應、DNA片段純化、線性 DNA去磷酸化及接合反應 16 II.13 重組質體之轉型作用 17 II.13.1大腸桿菌熱休克轉型 17 II.13.2衣藻電穿孔轉型 18 II.14 蛋白質定量 19 II.15 西方轉漬法 20 II.15.1三氯醋酸 (Trichloroacetic acid, TCA) 萃取蛋白質 20 II.15.2 SDS-PAGE分析 20 II.15.3轉印 21 II.15.4抗體免疫反應 21 II.15.5 ECL試劑顯影 (ImmobilonTM Western, USA) 22 III. 實驗結果 23 III.1 推測SMT15為硫酸鹽運輸蛋白 23 III.2 smt15-1於缺硫環境下無法正常誘導sulfur acclimation基因表現 24 III.3 相較於野生株,smt15-1累積較多的榖胱甘肽 24 III.4 缺硫狀態下之ARS2表現量與榖胱甘肽含量呈負相關 25 III.5 榖胱甘肽含量隨衣藻細胞週期而變動 26 III.6 細胞核內的glutathione分佈可能不受SMT15影響 27 III.7 乙醯半胱胺酸 (NAC) 所誘導之還原環境致使細胞延遲進入細胞週期 28 III.8 順丁烯二酸二乙酯 (Et2Mal) 誘導之氧化逆境會影響細胞進入S/M 階段 29 III.9 丁硫氨酸 (BSO) 對衣藻細胞週期的影響程度不穩定 30 III.10 外加glutathione無法有效增加細胞體內的glutathione含量 31 III.11 榖胱甘肽生合成基因 (GSH2) 轉殖株可增加榖胱甘肽合 成量 31 III.12 提高細胞體內glutathione含量會造成細胞分裂次數增加,產生小細胞的性狀 33 IV. 討論 36 IV.1 推測SMT15為硫酸鹽運輸蛋白 36 IV.2 榖胱甘肽與硫化物吸收代謝途徑 37 IV.3 榖胱甘肽與細胞週期 37 IV.4 氧化還原狀態之於細胞週期的調控 38 IV.5 榖胱甘肽生合成基因對細胞大小的調控 39 V. 參考文獻 42 VI. 表 51 VII. 圖 59 VIII. 補充資料 84 VIII.1 引言 84 VIII.2 介紹 84 VIII.3 研究方法 84 VIII.4 實驗結果 85 VIII.4.1使用1 μg的質體濃度,轉殖成功率較高 85 VIII.4.2過量表達H2A可稍微提升衣藻轉型效率 86 VIII.5 文獻資料 87

    Borras, C., Esteve, J.M., Vina, J.R., Sastre, J., Vina, J., and Pallardo, F.V. (2004). Glutathione regulates telomerase activity in 3T3 fibroblasts. The Journal of biological chemistry 279, 34332-34335.
     Buchner, P., Stuiver, C.E., Westerman, S., Wirtz, M., Hell, R., Hawkesford, M.J., and De Kok, L.J. (2004). Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H(2)S and pedospheric sulfate nutrition. Plant physiology 136, 3396-3408.
     Burhans, W.C., and Heintz, N.H. (2009). The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free radical biology & medicine 47, 1282-1293.
     Butt, A.D., and Ohlrogge, J.B. (1991). Acyl carrier protein is conjugated to glutathione in spinach seed. Plant physiology 96, 937-942.
     Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., and Meyer, A.J. (2006). Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant physiology 141, 446-455.
     Chen, Z., Odstrcil, E.A., Tu, B.P., and McKnight, S.L. (2007). Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science (New York, NY) 316, 1916-1919.
     Cheng, J.C., K. A. Seeley and Z. R. Sung (1995). RML7 and RML2, Arabidopsis Genes Required for Cell
    Proliferation at the Root Tip. Plant physiology 107.
     Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H., Pastori, G., Wellburn, F., Baker, N., Wellburn, A., et al. (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant cell 11, 1277-1292.
     Davies, P.J., Yildiz2, F.H., and Grossman, A. (1996). Sacl, a putative regulator that is critical for survival of Chiamydomonas reinhardtii during sulfur deprivation. The EMBO journal 15, 2150-2159.
     Dethlefsen, L.A., Lehman, C.M., Biaglow, J.E., and Peck, V.M. (1988). Toxic effects of acute glutathione depletion by buthionine sulfoximine and dimethylfumarate on murine mammary carcinoma cells. Radiation research 114, 215-224.
     Diaz Vivancos, P., Wolff, T., Markovic, J., Pallardo, F.V., and Foyer, C.H. (2010). A nuclear glutathione cycle within the cell cycle. The Biochemical journal 431, 169-178.
     Dron, M., Clouse, S.D., Dixon, R.A., Lawton, M.A., and Lamb, C.J. (1988). Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc Natl Acad Sci 85, 6738-6742.
     Esposito, F., Cuccovillo, F., Vanoni, M., Cimino, F., Anderson, C.W., Appella, E., and Russo, T. (1997). Redox-mediated regulation of p21(waf1/cip1) expression involves a post-transcriptional mechanism and activation of the mitogen-activated protein kinase pathway. European journal of biochemistry / FEBS 245, 730-737.
     Fang, S.C., de los Reyes, C., and Umen, J.G. (2006). Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS genetics 2, e167.
     Fang, S.C., and Umen, J.G. (2008). A suppressor screen in chlamydomonas identifies novel components of the retinoblastoma tumor suppressor pathway. Genetics 178, 1295-1310.
     Fischer, N., and Rochaix, J.D. (2001). The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Molecular genetics and genomics : MGG 265, 888-894.
     Foyer, C.H., and Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant cell 17, 1866-1875.
     Gonzalez-Ballester, D., Casero, D., Cokus, S., Pellegrini, M., Merchant, S.S., and Grossman, A.R. (2010). RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. The Plant cell 22, 2058-2084.
     Hell, R., and Bergmann, L. (1990). 7-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180, 603-612
     Herschbach, C., and Rennenberg, H. (1994). Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. Journal of Experimental Botany 45, 1069-1076.
     Holmgren, A. (1976). Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci 73.
     Kerk, M.N., and Feldman, L.J. (1995). A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121, 2825-2833
     Kopriva, S., and Rennenberg, H. (2004). Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. Journal of experimental botany 55, 1831-1842.
     Kranner, I., Beckett, R.P., Wornik, S., Zorn, M., and Pfeifhofer, H.W. (2002). Revival of a resurrection plant correlates with its antioxidant status. The Plant journal : for cell and molecular biology 31, 13-24.
     Leustek, T., Melinda, N., bICK, J.A., and Davies, J.p. (2000). Pathways and regulatione of sulfur metabolism revealed through molecular and genetic studies. Plant physiology 51, 141-165.
     Liedschulte, V., Wachter, A., Zhigang, A., and Rausch, T. (2010). Exploiting plants for glutathione (GSH) production: Uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant biotechnology journal 8, 807-820.
     Markovic, J., Borras, C., Ortega, A., Sastre, J., Vina, J., and Pallardo, F.V. (2007). Glutathione is recruited into the nucleus in early phases of cell proliferation. The Journal of biological chemistry 282, 20416-20424.
     Markovic, J., Mora, N.J., Broseta, A.M., Gimeno, A., de-la-Concepcion, N., Vina, J., and Pallardo, F.V. (2009). The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts. PloS one 4, e6413.
     Maughan, S.C., Pasternak, M., Cairns, N., Kiddle, G., Brach, T., Jarvis, R., Haas, F., Nieuwland, J., Lim, B., Muller, C., et al. (2010). Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proceedings of the National Academy of Sciences of the United States of America 107, 2331-2336.
     May M.J., V.T., Leaver C, Van Montagu M, Inzé D (1998). Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of experimental botany 49, 649-667.
     Menon, S.G., and Goswami, P.C. (2007). A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26, 1101-1109.
     Menon, S.G., Sarsour, E.H., Spitz, D.R., Higashikubo, R., Sturm, M., Zhang, H., and Goswami, P.C. (2003). Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer research 63, 2109-2117.
     Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Marechal-Drouard, L., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science (New York, NY) 318, 245-250.
     Meyer, A.J., and Hell, R. (2005). Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynthesis research 86, 435-457.
     Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.
     Noctor, G., Arisi, A.C., Jouanin, L., and Foyer, C.H. (1998). Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant physiology 118, 471-482.
     Noctor, G., and Foyer, C.H. (1998). Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Analytical biochemistry 264, 98-110.
     Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of experimental botany 53, 1283-1304.
     Noctor, G., Strohm, M., Jouanin, L., Kunert, K.J., Foyer, C.H., and Rennenberg, H. (1996). Synthesis of Glutathione in Leaves of Transgenic Poplar Overexpressing [gamma]-Glutamylcysteine Synthetase. Plant physiology 112, 1071-1078.
     Parasassi, T., Brunelli, R., Costa, G., De Spirito, M., Krasnowska, E., Lundeberg, T., Pittaluga, E., and Ursini, F. (2010). Thiol redox transitions in cell signaling: a lesson from N-acetylcysteine. TheScientificWorldJournal 10, 1192-1202.
     Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C.S., and Meyer, A.J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. The Plant journal : for cell and molecular biology 53, 999-1012.
     Plummer, J.L., Smith, B.R., Sies, H., and Bend, J.R. (1981). Chemical depletion of glutathione in vivo. Methods in enzymology 77, 50-59.
     Pootakham, W., Gonzalez-Ballester, D., and Grossman, A.R. (2010). Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant physiology 153, 1653-1668.
     Russo, T., Zambrano, N., Esposito, F., Ammendola, R., Cimino, F., Fiscella, M., Jackman, J., O'Connor, P.M., Anderson, C.W., and Appella, E. (1995). A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. The Journal of biological chemistry 270, 29386-29391.
     Schafer, F.Q., and Buettner, G.R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free radical biology & medicine 30, 1191-1212.
     Schroda, M., Blocker, D., and Beck, C.F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant journal : for cell and molecular biology 21, 121-131.
     Shibagaki, N., and Grossman, A.R. (2004). Probing the function of STAS domains of the Arabidopsis sulfate transporters. The Journal of biological chemistry 279, 30791-30799.
     Shibagaki, N., and Grossman, A.R. (2006). The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. The Journal of biological chemistry 281, 22964-22973.
     Shibagaki, N., and Grossman, A.R. (2010). Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences. The Journal of biological chemistry 285, 25094-25102.
     Sonnhammer, E.L., von Heijne, G., and Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings / International Conference on Intelligent Systems for Molecular Biology ; ISMB International Conference on Intelligent Systems for Molecular Biology 6, 175-182.
     Strohm, M., L. Jouanin, K. J. Kunert, C. Pruvost, A. Polle, C. H. Foyer , and Rennenberg, a.H. (1995). Regulation of glutathione synthesis in leaves of transgenic poplr (Populus tremula X P. alba) overexpressing glutathione synthetase. Plant J 7, 141-145.
     Tu, B.P., Kudlicki, A., Rowicka, M., and McKnight, S.L. (2005). Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science (New York, NY) 310, 1152-1158.
    Umen, J.G. (2005). The elusive sizer. Current opinion in cell biology 17, 435-441.
     Umen, J.G., and Goodenough, U.W. (2001). Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes & development 15, 1652-1661.
     Vernoux, T., R. C. Wilson, K. A. Seeley, J. P. Reichheld, S. Muroy, S. Brown, S. C. Maughan, C. S. Cobbett, M. V. Montagu, D. Inzé, et al. (2000). The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during
     Postembryonic Root Development. The Plant cell 12, 97-109.
     Vivancos, P.D., Dong, Y., Ziegler, K., Markovic, J., Pallardo, F.V., Pellny, T.K., Verrier, P.J., and Foyer, C.H. (2010). Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. The Plant journal : for cell and molecular biology 64, 825-838.
     Wachter, A., Wolf, S., Steininger, H., Bogs, J., and Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant journal : for cell and molecular biology 41, 15-30.
     Weinberg, R.A. (1995). The retinoblastoma protein and cell cycle control. Cell 81, 323-330.
     Xiang, C., Werner, B.L., Christensen, E.M., and Oliver, D.J. (2001). The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant physiology 126, 564-574.
     Zechmann, B., Mauch, F., Sticher, L., and Muller, M. (2008). Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. Journal of experimental botany 59, 4017-4027.
     Zhu, Y.L., Pilon-Smits, E.A., Tarun, A.S., Weber, S.U., Jouanin, L., and Terry, N. (1999). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant physiology 121, 1169-1178.

    無法下載圖示 校內:2014-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE