簡易檢索 / 詳目顯示

研究生: 舒一修
Shu, I-Hsiu
論文名稱: 手部姿勢搭配物件偵測於學生參與度之識別:以避障自走車為例
Capture Student Engagement by Hand-Pose with Object-Detection : Taking Obstacles Avoidance Car Activity as Example
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 創客教育學生參與度影像辨識人體姿態估算物件偵測
外文關鍵詞: Maker Education, Student Engagement, Image Recognition, Human Pose Estimation, Object Detection
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於主動思考及動手實作的實踐能力越來越被重視,使得創客教育在世界各國開始蔚為風潮;與傳統教育被動接受知識的方式相比,創客教育的學習方式對於學生影響是非常正面且有效的。與此同時,隨之而來的即是如何有效的評估與分析學生於課堂表現的議題,其中,過往研究指出學生後續的成功發展與其在課堂的參與有相關,因此在創客教育上經常以自我報告的方式量測學生參與度,而隨著深度學習與影像辨識技術的快速發展,這使得自動量測的技術變得可行。因此,本研究旨在提出一個使用自動量測技術於學生參與度識別之新架構,本架構將使用OpenPose網路與YOLO網路,結合本研究自行開發之行為辨識演算法對手部關鍵點與創客物品進行偵測,並透過行為辨識演算法辨識學生在課堂上與創客物品之互動情形進行紀錄與統計。
    本研究以避障自走車作為創客活動,並招募30位自願參與者完成所有實驗任務;我們將所有學生的創作過程進行紀錄,並使用了這些創客行為影片對OpenPose進行了測試。研究結果顯示,單手辨識度為92%,雙手辨識度為66%;此外,在物件偵測問題中七項創客物件的辨識度mAp達99.5%,自行開發之行為辨識演算法在七種創客行為的辨識上可達到平均85%的準確率。另一方面,儘管在創客參與評估中與學習參與與情緒不滿量表(Engagement Versus Disaffection With Learning, EvsD)中行為總分無顯著相關;然本研究進一步運用總任務時間作為參與度量測因子,則可得到創客行為次數與參與時間之可靠關係。因此,從研究結果顯示,本研究所提出之架構,即OpenPose網路、YOLO網路以及行為辨識演算法,為創客教育學生參與度提供全新的視野與藍圖,同時,也為創客行為自動化辨識的可行性作出相應的參考依據。

    In recent years, the practical ability of active thinking and hands-on practice has been paid more and more attention, making maker education a popular trend in countries all over the world. Past studies have pointed out that the subsequent successful development of students is related to their participation in the classroom. With the rapid development of deep learning and image recognition technology, this makes automatic measurement technology feasible on measure student engagement. Therefore, this research aims to propose a new architecture that uses automatic measurement technology for student engagement recognition. This architecture will use OpenPose network and YOLO network, combined with the behavior recognition algorithm developed by this research. Detecting maker activity items, and using behavior recognition algorithms to identify students’ interactions with maker activity items in class.
    In this study, obstacle avoidance car were used as a maker activity, and 30 volunteer participants were recruited to complete all experimental tasks; we recorded the creative process of all students, and used these maker behavior videos to test OpenPose. The research results show that the recognition rate of single hand is 92%, and the recognition rate of pair of hands is 66%; in addition, the recognition rate of seven maker objects in the object detection problem is 99.5%, the self-developed behavior recognition algorithm can achieve an average accuracy of 85% in the recognition of seven kinds of maker behaviors.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 壹、 前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的與問題 3 1.4 章節提要 4 貳、 文獻探討 5 2.1 創客教育 5 2.1.1 創客教育的應用 5 2.2 學生參與度 7 2.2.1 學生參與度的量測 8 2.2.2 學生參與度量測於課堂中 10 2.3 人工神經網路 11 2.3.1 梯度下降(Gradient Descent)與反向傳播(Back Propagation) 13 2.4 影像辨識 19 2.4.1 卷積神經網路 19 2.4.2 ImageNet 23 2.4.3 影像辨識網路演化 26 2.4.4 物件偵測 28 2.4.5 人體姿勢評估 31 參、 系統架構 35 3.1.1 系統架構圖 35 3.1.2 OpenPose 36 3.1.3 YOLO網路訓練 37 3.1.4 行為辨識演算法 39 3.1.5 教材與事件紀錄平台 43 肆、 研究方法 46 4.1 實驗流程 46 4.2 實驗對象 47 4.3 實驗設計 48 4.4 研究工具 52 伍、 結果分析與討論 53 5.1 手部關鍵點網路預測結果 53 5.2 物件偵測網路預測結果 54 5.3 行為辨識演算法準確度分析 56 5.4 創客行為與學生參與度分析 59 陸、 結論與未來展望 66 6.1 研究結論 66 6.2 未來展望 66 參考文獻 68 附錄 一、程式語言與嵌入式開發版熟悉程度問卷 74 附錄 二、學生參與度量表Engagement Versus Disaffection With Learning (EvsD) 75 附錄 三、自走車任務評分檢核表 76

    Angello, G., Chu, S. L., Okundaye, O., Zarei, N., & Quek, F. (2016). Making as the new colored pencil: translating elementary curricula into maker activities. Paper presented at the Proceedings of the The 15th International Conference on Interaction Design and Children.
    Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument. Journal of school psychology, 44(5), 427-445.
    Ashwin, T., & Guddeti, R. M. R. (2019). Unobtrusive behavioral analysis of students in classroom environment using non-verbal cues. IEEE Access, 7, 150693-150709.
    Astin, A. W. (1984). Student involvement: A developmental theory for higher education. Journal of college student personnel, 25(4), 297-308.
    Barbadekar, A., Gaikwad, V., Patil, S., Chaudhari, T., Deshpande, S., Burad, S., & Godbole, R. (2019). Engagement Index for Classroom Lecture using Computer Vision. Paper presented at the 2019 Global Conference for Advancement in Technology (GCAT).
    Berger, J. B., & Milem, J. F. (1999). The role of student involvement and perceptions of integration in a causal model of student persistence. Research in higher Education, 40(6), 641-664.
    Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2018). OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. arXiv preprint arXiv:1812.08008.
    Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Chickering, A. W., & Gamson, Z. F. (1987). Seven principles for good practice in undergraduate education. AAHE bulletin, 3, 7.
    Chu, S. L., Schlegel, R., Quek, F., Christy, A., & Chen, K. (2017). 'I Make, Therefore I Am' The Effects of Curriculum-Aligned Making on Children's Self-Identity. Paper presented at the Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
    Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A. L., & Wang, X. (2017). Multi-context attention for human pose estimation. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    Coates, H. (2010). Development of the Australasian survey of student engagement (AUSSE). Higher Education, 60(1), 1-17.
    Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., . . . Yang, K. (2012). Large scale distributed deep networks. Paper presented at the Advances in neural information processing systems.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. Paper presented at the 2009 IEEE conference on computer vision and pattern recognition.
    Dougherty, D. (2013). The maker mindset. Design, make, play: Growing the next generation of STEM innovators, 7-11.
    Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).
    Fang, H.-S., Xie, S., Tai, Y.-W., & Lu, C. (2017). Rmpe: Regional multi-person pose estimation. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.
    Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2009). Object detection with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine intelligence, 32(9), 1627-1645.
    Finn, J. D. (1989). Withdrawing from school. Review of educational research, 59(2), 117-142.
    Fredricks, J. A. (2011). Engagement in school and out-of-school contexts: A multidimensional view of engagement. Theory into practice, 50(4), 327-335.
    Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard educational review, 84(4), 495-504.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
    Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107-116.
    Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
    House, W. (2014). FACT SHEET: President Obama to host first-ever White House Maker Faire. Retrieved on August, 23, 2014.
    Hsu, Y.-C., Baldwin, S., & Ching, Y.-H. (2017). Learning through making and maker education. TechTrends, 61(6), 589-594.
    Huang, T.-C., Lin, W., & Yueh, H.-P. (2019). How to cultivate an environmentally responsible maker? A CPS approach to a comprehensive maker education model. International Journal of Science and Mathematics Education, 17(1), 49-64.
    Igoe, T., & O'Sullivan, D. (2004). Physical computing: sensing and controlling the physical world with computers.
    Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. (2016). Deepercut: A deeper, stronger, and faster multi-person pose estimation model. Paper presented at the European Conference on Computer Vision.
    Kahu, E. R. (2013). Framing student engagement in higher education. Studies in higher education, 38(5), 758-773.
    Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Paper presented at the Advances in neural information processing systems.
    Kuh, G. D. (2005). Putting student engagement results to use: Lessons from the field.
    LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    Lee, V. R., Fischback, L., & Cain, R. (2019). A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 59, 101789.
    Liang, J.-M., Su, W.-C., Chen, Y.-L., Wu, S.-L., & Chen, J.-J. (2019). Smart interactive education system based on wearable devices. Sensors, 19(15), 3260.
    Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.
    Lui, D., Litts, B. K., Widman, S., Walker, J. T., & Kafai, Y. B. (2016). Collaborative Maker Activities in the Classroom: Case Studies of High School Student Pairs' Interactions in Designing Electronic Textiles. Paper presented at the Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education.
    Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research (J-PEER), 5(1), 4.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Morgan, G. L. (2008). Improving student engagement: Use of the interactive whiteboard as an instructional tool to improve engagement and behavior in the junior high school classroom.
    National Survey of Student Engagement. (2019). NSEE 2019 Engagement Indicators. Retrieved from https://nsse.indiana.edu/nsse/reports-data/sample-report/report-images/engagement-indicators.html
    Pace, C. R. (1980). Measuring the quality of student effort. Current Issues in Higher Education, 2(1), 10-16.
    Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C., & Murphy, K. (2017). Towards accurate multi-person pose estimation in the wild. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. Paper presented at the International conference on machine learning.
    Pascarella, E. T., Seifert, T. A., & Blaich, C. (2010). How effective are the NSSE benchmarks in predicting important educational outcomes? Change: The Magazine of Higher Learning, 42(1), 16-22.
    Paulhus, D. L., & Vazire, S. (2007). The self-report method. Handbook of research methods in personality psychology, 1, 224-239.
    Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P. V., & Schiele, B. (2016). Deepcut: Joint subset partition and labeling for multi person pose estimation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Raj, B. (2019). An Overview of Human Pose Estimation with Deep Learning. Retrieved from https://medium.com/beyondminds/an-overview-of-human-pose-estimation-with-deep-learning-d49eb656739b
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.
    Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
    Santo, R. (2013). Towards hacker literacies: What Facebook’s privacy snafus can teach us about empowered technological practices. Digital Culture & Education, 5(1), 18-33.
    Schalkoff, R. J. (2007). Pattern recognition. Wiley Encyclopedia of Computer Science and Engineering.
    Simon, T., Joo, H., Matthews, I., & Sheikh, Y. (2017). Hand keypoint detection in single images using multiview bootstrapping. Paper presented at the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
    Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection: Conceptualization and assessment of children's behavioral and emotional participation in academic activities in the classroom. Educational and psychological measurement, 69(3), 493-525.
    Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., & Babu, R. V. (2017). An introduction to deep convolutional neural nets for computer vision. In Deep Learning for Medical Image Analysis (pp. 25-52): Elsevier.
    Steffe, L. P., & Gale, J. E. (1995). Constructivism in education: Psychology Press.
    Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. Paper presented at the International conference on machine learning.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Tang, W., Yu, P., & Wu, Y. (2018). Deeply learned compositional models for human pose estimation. Paper presented at the Proceedings of the European Conference on Computer Vision (ECCV).
    Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26-31.
    Townsend, J. T. (1971). Theoretical analysis of an alphabetic confusion matrix. Perception & Psychophysics, 9(1), 40-50.
    Trowler, V. (2010). Student engagement literature review. The higher education academy, 11(1), 1-15.
    Wallace, J., & Louden, W. (1998). Curriculum change in science: Riding the waves of reform. International handbook of science education, 1, 471-485.
    Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. Paper presented at the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
    Zepke, N., & Leach, L. (2010). Beyond hard outcomes:‘Soft’outcomes and engagement as student success. Teaching in Higher Education, 15(6), 661-673.
    Zhang, Z., Li, Z., Liu, H., Cao, T., & Liu, S. (2020). Data-driven Online Learning Engagement Detection via Facial Expression and Mouse Behavior Recognition Technology. Journal of Educational Computing Research, 58(1), 63-86.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE