| 研究生: |
林德育 Lin, Der-Yuh |
|---|---|
| 論文名稱: |
球蟲感染之雞隻盲腸與泄殖腔內容物中微生物多源基因體研究 The metagenomics of microbiome in cecal and cloaca contents of coccidian infected chicken |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 雞 、球蟲 、微生物 、多源基因體 、盲腸 、泄殖腔 |
| 外文關鍵詞: | chicken, coccidian, microbiome, metagenomics, cecal, cloaca |
| 相關次數: | 點閱:193 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雞球蟲病是造成養雞產業相當大損失的重要疾病之一。主要是造成雞隻腸道上皮細胞中度至嚴重損壞,導致增重與飼料效率降低,並經常引發雞群高的發病率和死亡率。本試驗應用Illumina MiSeq system 分析球蟲對於土雞盲腸與泄殖腔內微生物菌相的影響。DNA樣品取自雞隻盲腸有球蟲感染與沒有受到球蟲感染的盲腸與泄殖腔內容物。以16S rRNA共通的引子組與Illumina MiSeq system 定序分析獲得每個樣品組大量的細菌類群的DNA片段定量型材(quantitative profiles)。採用分層聚類和主成分分析已鑑定出的類群的相對百分比豐度。在盲腸沒有球蟲感染的雞隻盲腸內容物的微生物菌相中,以擬桿菌屬(Bacteroides)最豐富,其次分別為牛黄瘤胃球菌屬(Ruminococcus)、Alistipes及梭孢桿菌屬(Clostridium)。而在盲腸有球蟲感染的雞隻盲腸內容物的微生物菌相中,則以Clostridium最豐富,其次分別為Bacteroides及Alistipes。在盲腸沒有球蟲感染的雞隻泄殖腔內容物的微生物菌相中,以Clostridium最豐富,其次分別為 Bacteroides、Subdoligranulum及乳桿菌屬(Lactobacillus)。而在盲腸有球蟲感染的雞隻泄殖腔內容物的微生物菌相中,也是以Lactobacillus最豐富,其次為Clostridium、Turicibacter及Bacteroides。球蟲感染明顯地影響雞隻盲腸與泄殖腔內微生物菌相的分布與豐度。本研究所呈現球蟲感染對雞腸道菌群的影響,可作為雞隻球蟲病防治的重要參考資訊。
Coccidiosis, one of the most important chicken diseases, causes considerable economic loss in the chicken industry. Coccidiosis causes serious mucosal damage and predisposes chickens to enteropathogen infection. In this study, Illumina sequencing approach was used to evaluate effects of coccidiosis on the intestinal microflora of native chicken. Total DNA was isolated from the cecal and cloaca contents of infected and uninfected birds, respectively, PCR amplified with an universal 16S rRNA barcodes, and sequenced by Illumina MiSeq. Quantitative profiles of bacterial taxa were obtained using an analysis pipeline written in Perl. The relative abundance of the identified taxa was analyzed using hierarchical clustering and principal component analysis. Samples from the cecal contents of uninfected chickens were dominated by bacterial species belonging to the genera Bacteroides, Ruminococcus, Alistipes and Clostridium; cecal contents of infected samples were dominated by species from the genera Clostridium, Alistipes and Bacteroides. On the other hand, samples from the cloaca of uninfected chickens were dominated by bacterial species belonging to genera Clostridium, Bacteroides, Subdoligranulum and Lactobacillus; the infected cloaca samples were dominated by species from the genera Lactobacillus, Clostridium, Turicibacter and Bacteroides. Coccidia infection affects not only the richness of the microbial communities but also its composition in the cecum and cloaca. These results prove the coccidia influence on the microbial communities of chicken gut and provide important information for the prevention and cure of chicken coccidiosis.
Aggrey, S.E., A.B. Karnuah, B. Sebastian and N.B. Anthony, 2010. Genetic properties of feed efficiency parameters in meat-type chickens. Genet. Sel. Evol. 42: 25 doi:10.1186/1297 -9686-42-25.
Allen, P.C. and R.H. Fetterer. 2002. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin. Microbiol. Rev. 15:58–65.
Al-Nasser, A., H. Al-KHalaifa, A. AL-Saffar, F. Khalil, M. Albahouh, G. Ragheb, A. AL-Haddad and M. Mashaly. 2007. Overview of chicken taxonomy and domestication. World's Poult. Sci. J. 63:285–300.
Antonopoulos, D.A., S.M. Huse, H.G. Morrison, T.M. Schmidt, M.L. Sogin and V.B. Young. 2009. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77:2367–2375.
Apajalahti J., A. Kettunen and H. Graham. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poult. Sci. J. 60:223–232.
Baker, D.H. 2008. Animal models in nutrition research. J. Nutr. 138:391–396
Barnes, E.M. 1979. The intestinal microflora of poultry and game birds during life and after storage. J. Appl. Bacteriol. 46:407–419.
Barnes, E.M. and C.S. Impey. 1972. Some properties of the nonsporing anaerobes from poultry caeca. J. Appl. Bacteriol. 35:241–251.
Barnes, E.M., G.C. Mead, D.A. Barnum and E.G. Harry. 1972. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. Brit. Poult. Sci. 13:311–326.
Baura, A., P. Bitterman, J.S. Abramowicz, A.L. Dirks, J.M. Bahr, D.B. Hales, M.J. Bradarica, S.L. Edassery, J. Rotmensch and J.L. Luborsky. 2009. Histopathology of ovarian tumorsin laying hens, a preclinical model of human ovarian cancer. Int. J. Gynecol. Cancer 19(4):531–539.
Bera, A.K., D. Bhattacharya, D. Pan, B. Manna, S. Bandyopadhyay and S.K. Das. 2010. Effect of heat killed Mycobacterium phlei on body weight gain and management of caecal coccidiosis in broiler chickens. Res. Vet. Sci. 89:196–199.
Bjerrum, L., R.M. Engberg, T.D. Leser, B.B. Jensen, K. Finster and K. Pedersen. 2006. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult. Sci. 85: 1151–1164.
Bokkers, E.A. and I.J. de Boer. 2009. Economic, ecological, and social performance of conventional and organic broiler production in the Netherlands. Br. Poult. Sci. 50:546–557.
Burgos, S. and S.A. Burgos. 2006. The Role of Chickens in Vitamin Discoveries. Int. J. Poult. Sci. 5 (8): 704–707.
Burt, D.W. 2005. Chicken genome: Current status and future opportunities. Genome Res. 15: 1692–1698.
Chandler, D.P., J.K. Fredrickson and F.J. Brockman. 1997. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol. Ecol. 6:475–482.
Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed- Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity and J.M Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141–D145.
Cook, G.C. 1988. Small intestinal coccidiosis: An emergent clinical problem. J. Infect. 16:213–219.
Corrigan, A., K. Horgan, N. Clipson, R. A. Murphy. 2011. Effect of dietary supplementation with a Saccharomyces cerevisiae mannan oligosaccharide on the bacterial community structure of broiler cecal contents. Appl. Environ. Microbiol. 77:6653–6662.
Crawford, R.D. 1995. Origin, history, and distribution of commercial poultry. In Hunton, P. (ed.), Poultry Production, Amsterdam: Elsevier, pp. 1–20.
Dalloul, R.A. and H.S. Lillehoj. 2005. Recent advances in immunomodulation and vaccination strategies against coccidiosis. Avian Dis. 49:1–8.
Dalloul, R.A., and H.S. Lillehoj. 2006. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev. Vaccines 5: 143–163.
Dethlefsen, L., S. Huse, M.L. Sogin and D.A. Relman. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008, 6:e280.
Du, A. and S. Hu. 2004. Effects of a herbal complex against Eimeria tenella infection in chickens. J. Vet. Med. B, Infect. Dis. Vet. Public Health. 51(4):194–197.
FAO. 2009. FAO Food Outlook. P27.
FAO. 2010. Poultry Meat & Eggs. Agribusiness Handbook. Director Investment Centre Division, FAO., Rome, Italy.
FAO. 2013. World Egg Day. 2012. http://www.fao.org/ag/againfo/themes/en /poultry/ human_health.html.
Finlay, R.C., S.J. Roberts and A.C. Hayday. 1993. Dynamic response of murine gut intraepithelial T cells after infection by the coccidian parasite Eimeria. Eur. J. Immunol. 23(10):2557–2564.
Fitzpatrick, D.M. and K. Ahmed. 2000. Red roving fowl. Down Earth,9: 28.
Furlong, R.F. 2005. Insights into vertebrate evolution from the chicken genome sequence. Genome Biol. 6(2):207.
Giles, J.R., R.G. Elkin, L.S. Trevino, M.E. Urick, R. Ramachandran and P.A. Johnson. 2010. The restricted ovulator chicken: a unique animal model forinvestigating the etiology of ovarian cancer. Int. J. Gynecol. Cancer 20(5):738–744.
Gong, J., W. Si, R.J. Forster, R. Huang, H. Yu, Y. Yin, C. Yang and Y. Han. 2007. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol. Ecol. 59(1):147-57
Guo, A., J. Cai, W. Gong, H. Yan, X. Luo, G. Tian, S. Zhang, H. Zhang, G. Zhu and X. Cai. 2013. Transcriptome analysis in chicken cecal epithelia upon infection by Eimeria tenella In Vivo. PLoS One 8(5):e64236.
Guzman, V.B., D.A.O. Silva and U. Keo. 2003. A comparison between Igg antibodies against Eimeria acervulina, E. maxima, and E. tenella and oocyst shedding in broiler-breeders vaccinated with live anticoccidial vaccines. Vaccine 21:4225–4233.
Handelsman, J. 2004. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol. Mol. Biol. Rev. 68(4): 669–685.
Handelsman, J., M.R. Rondon, S.F. Brady, J. Clardy and R.M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Boil. 5(10):R245–R249.
Hedges, S.B. 2002. The origin and evolution of model organisms. Nat. Rev. Genet. 3: 838−849.
Huson, D.H., A.F. Auch, J. Qi and S.C. Schuster. 2007. MEGAN analysis of metagenomic data. Genome Res. 17: 377–386.
International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018): 695–716.
Jernberg, C., S. Lofmark, C. Edlund and J.K. Jansson. 2010. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156:3216–3223.
Jessica, L.D., B.K. Hyeun, E.I. Richard, J.T. Zheng and J.J. Timothy. 2011. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One 6(11): e27949.
Juricova, H., P. Videnska, M. Lukac, M. Faldynova, V. Babak, H. Havlickova, F. Sisak and I. Rychlik. 2013. Influence of Salmonella enterica serovar enteritidis infection on the development of the cecum microbiota in newly hatched chicks. Appl. Environ. Microbiol. 79(2):745-747.
Kim, M., M. Morrison and Z.Yu. 2010. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Methods. 84(1):81–87.
Kley, M.A.M., E.O. Oviedo-Rondón, S.E. Dowd, M. Hume and A. Nalian. 2012. Effect of Eimeria infection on cecal microbiome of broilers fed essential oils. Int. J. Poult. Sci. 11 (12): 747–755.
Knarreborg, A., M.A. Simon, R.M. Engberg, B.B. Jensen and G.W. Tannock. 2002. Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microbiol. 68:5918–5924.
Komiyama, T., K. Ikeo, Y. Tateno and T. Gojobori. 2004. Japanese domesticated chickens have been derived from Shamo traditional fighting cocks. Mol. Phylogenet. Evol. 33(1):16–21.
Lane, D.J., B. Pace, G.J. Olsen, D.A Stahl., M.L. Sogin and N.R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. U S A. 82(20):6955–6959.
Lazarevic, V., K. Whiteson, S. Huse, D. Hernandez, L. Farinelli, M. Osterås, J. Schrenzel and P. François. 2009. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79(3):266-271.
Lee, Y.P. 2006. Taiwan Country Chicken: a slow growth breed for eating quality. 2006 Scientific Cooperation in Agriculture between Council of Agriculture (Taiwan, R.O.C.) and Institut National de la Recherche Agronomique (France).
Li, M., J. Gong, M. Cottrill, H. Yu, C. de Lange, J. Burton, E. Topp. 2003. Evaluation of QIAamp® DNA Stool Mini Kit for ecological studies of gut microbiota. J. Microbiol. Methods 54(1): 13–20.
Lillehoj, H.S. and E.P. Lillehoj. 2000. Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis. 44:408–425.
Liu, Y.P., Q. Zhu and Y.G. Yao. 2006. Genetic relationship of Chinese and Japanese gamecocks revealed by mtDNA sequence variation. Biochem. Genet. 44(1-2): 19–29.
Lu, J., U. Idris, B. Harmon, C. Hofacre, J.J. Maurer and M.D. Lee. 2003. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 69(11):6816–6824.
Masabanda, J.S., D.W. Burt, P.C. O'Brien, A. Vignal, V. Fillon, P.S. Walsh, H. Cox, H.G. Tempest, J. Smith, F. Habermann, M. Schmid, Y. Matsuda, M.A. FergusonSmith, R.P. Crooijmans, M.A. Groenen and D.K. Griffin. 2004. Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166:1367–1373.
McDougald, L.R. 1998. Intestinal protozoa important to poultry. Poult. Sci. 77 :1156–1158.
McDougald, L.R. and S. Fitz-Coy. 2008. Coccidiosis. Pages 1068–1085 in Diseases of Poultry. 12th ed. Y. M. Saif, ed. Blackwell Publishing, Ames, IA.
Mead, G.C. 2000. Prospects for competitive exclusion treatment to control salmonellas and other foodborne pathogens in poultry. Vet. J. 159:111–123.
Miao, Y.W., M.S. Peng, G.S. Wu, Y.N. Ouyang, Z.Y. Yang, N. Yu, J.P. Liang, G. Pianchou, A. Beja-Pereira, B. Mitra, M.G. Palanichamy, M. Baig, T.K. Chaudhuri, Y.Y. Shen, Q.P. Kong, R.W. Murphy, Y.G. Yao and Y.P. Zhang. 2013. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110(3):277–282.
Mileusnic, R. and S. Rose. 2010. The chick as a model for the study of the cellular mechanisms and potential therapies for Alzheimer's Disease. Int. J. Alzheimer's Dis.
Nathiya, S., G. Dhinakar raj, A. Rajasekar, D. Vijayalakshmi and T. Devasena. 2012. Identification of microbial diversity in caecal content of broiler chicken. African Journal of Microbiology Research 6(23):4897-4902.
Nordentoft, S., L. Molbak, L. Bjerrum, J.D. Vylder, F.V. Immerseel and K. Pedersen. 2011. The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiol. 11:187.
Okulewicz, A. and J. Zlotorzycka. 1985. Connections between Ascaridia galli and the bacterial flora in the intestine of hens. Angew. Parasitol. 26(3):151-155.
Ong S.H., V.U. Kukkillaya, A. Wilm, C. Lay, E.X. Ho, L. Low, M.L. Hibberd and N. Nagarajan. 2013. Species identification and profiling of complex microbial communities using shotgun Illumina sequencing of 16S rRNA amplicon sequences. PLoS One 8(4):e60811.
Pham, T.N.L., H. Hidenori, S. Mitsuo and B. Yoshimi. 2002. Phylogenetic analysis of caecal microbiota in chicken by the use of 16S rDNA clone libraries. J. Microbiol. Immunol. 46(6): 371–382.
QIAamp® DNA Stool Handbook for DNA purification from stool samples. 2012.
Qu, A, J.M. Brulc, M.K. Wilson, B.F. Law, J.R. Theoret, L.A. Joens, M.E. Konkel, F. Angly, E.A. Dinsdale, R.A. Edwards, K.E. Nelson and B.A. White. 2008. Comparative metagenomics reveals host-specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: e2945.
Rappe´, M.S. and S.J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57:369–394.
Reisz, R.R. and J. Muller. 2004. Molecular timescales and the fossil record: a paleontological perspective. Trends Genet. 20:237−241.
Reyna, P.S., G.F. Mathis and L.R. McDougald 1982. Survival of coccidia in poultry litter and reservoirs of infection. Avian Dis. 27:464–473.
Robinson, C.J. and V.B. Young.2010. Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes 1:279–284.
Rolfe, R.D. 2000. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130(Suppl.):396S–402S.
Saengkerdsub, S., R.C. Anderson, H.H. Wilkinson, W.K. Kim, D.J. Nisbet and S.C. Ricke. 2007. Identification and quantification of methanogenic Archaea in adult chicken ceca. Appl. Environ. Microbiol. 73(1):353-356.
Schloss, P.D. and J. Handelsman, 2004. Status of the microbial census. Microbiol. Mol. Biol. Rev. 68, 686–691.
Schmeisser, C., H. Steele and W.R. Streit. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75(5):955–962.
Shirley, M.W. and P.L. Long. 1990. Control of coccidiosis in chickens immunization with live vaccines. in coccidiosis in man and domestic animals, ed Long P.L.(CRC Press, Boca Raton, FL), pp 321–342.
Singh, K.M., T. Shah, S. Deshpande, S.J. Jakhesara, P.G. Koringa, D.N. Rank and C.G. Joshi. 2012. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol. Biol. Rep. 39(12):10595–10602.
Stern, C.D. 2004. The chick embryo - Past, present and future as a model system in developmental biology. Mech. Dev. 121: 1011–1013.
Stern, C.D. 2005. The chick: A great model system becomes even greater. Dev. Cell 8: 9–17.
Storey, A.A., J.S. Athens, D. Bryant, M. Carson, K. Emery, S. deFrance, C. Higham, L. Huynen, M. Intoh, S. Jones, P.V. Kirch, T. Ladefoged, P. McCoy, A. Morales-Muñiz, D. Quiroz, E. Reitz, J. Robins, R. Walter and E. Matisoo-Smith. 2012. Investigating the global dispersal of chickens in prehistory using ancient mitochondrial dna signatures. PLoS ONE 7(7): e39171.
Tanikawa, T., N. Shoji, N. Sonohara, S. Saito, Y. Shimura, J. Fukushima and T. Inamoto. 2011. Aging transition of the bacterial community structure in the chick ceca. Poult. Sci. 90(5):1004-1008.
Timms, L. 1968. Observations on the bacterial flora of the alimentary tract in three age groups of normal chickens. Br. Vet. J. 124: 470–477.
Toledo, G.A., J.D. Almeida, K.de S. Almeida and F.L. Freitas. 2011. Coccidiosis in broiler chickens raised in the Araguaína region, State of Tocantins, Brazil. Rev. Bras. Parasitol. Vet. 20(3):249–252.
Torsvik, V., J. Goksøyr and F.L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782–787.
Usman, J.G.A., U.N. Gadzama, A.V. Kwaghe and H.A. Madziga. 2011. Anticoccidial resistance in poultry: A Review. New York Sci. J. 4(8):102–109.
van der Wielen, P.W., D.A. Keuzenkamp, L.J. Lipman, F. van Knapen, and S. Biesterveld. 2002. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microb. Ecol. 44:286–293.
Vanderhyden, B.C., T.J. Shaw and J.F. Ethier. 2003. Animal models of ovarian cancer. Reprod. Biol. Endocrinol. 1:67.
Videnska, P., M. Faldynova, H. Juricova, V. Babak, F. Sisak, H. Havlickova and I. Rychlik. 2013. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 9:30.
Wang, Q., G.M. Garrity, J.M. Tiedje and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267.
Wick, G., R.S. Sundick and B. Albini. 1974. The Obese strain (OS) of chickens: An animal model with spontaneous autoimmune thyroiditis. Clin. Immunol. Immunopathol. 3(2):272–300.
Willams, R.B. 1999. A compartmentalised model for the estimation of the cost of coccidiosis to the world's chicken production industry. Int. J. Parasitol. 29(8): 1209–1229.
Wise, M. G. and G.R. Siragusa. 2007. Quantitative detection of clostridium perfringens in the broiler fowl gastrointestinal tract by Real-Time PCR. Appl. Environ. Microbiol. 71:3911–3916.
Yeoman, C.J., N. Chia, P. Jeraldo, M. Sipos, N.D. Goldenfeld and B.A. White. 2012. The microbiome of the chicken gastrointestinal tract. Anim Health Res Rev. 13(1):89-99.
Zhao, L., G. Wang, P. Siegel, C. He, H. Wang, W. Zhao, Z. Zhai, F. Tian, J. Zhao, H. Zhang, Z. Sun, W. Chen, Y. Zhang and H. Meng. 2013. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci. Rep. 3:1163.
Zhu, X.Y., T. Zhong, Y. Pandya and R.D. Joerger. 2002. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl. Environ. Microbiol. 68:124–137.
李永基、劉錦志。1978。本省分布之雞球蟲病病原調查。中華獸醫誌 4:31–37。
馬春祥,1984。家禽學,國立編譯館,台北。
戴謙、鍾秀枝、黃祥吉、張秀鑾、黃鈺嘉、劉瑞珍。1996。台灣土雞之近親育種II. 全同胞近親對生長性能之影響。中畜會誌 25(4):421–433。
戴謙、鍾秀枝、黃祥吉、張秀鑾、鄭裕信、劉瑞珍。1995。台灣土雞之近親育種I. 全同胞近親對產蛋性能之影響。中畜會誌 24(3):287–295