簡易檢索 / 詳目顯示

研究生: 陶維俊
Dao, Duy-Tuan
論文名稱: 在代理行動IPv6(PMIPv6)和分散式行動管理(DMM)架構上使用群組與樂觀方法之行動性管理機制
Mobility Management Scheme over Proxy Mobile IPv6 (PMIPv6) and Distributed Mobility Management (DMM) Architecture Using Group-based Approach and Optimistic Approach
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 116
外文關鍵詞: Distributed Mobility Management (DMM), Handover, Group-Based Handover, Fast Handover, Software Defined Network (SDN), Proxy Mobile Ipv6 (PMIPv6).
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IP行動網路最重要的問題之一是行動性管理,即在有線和無線以及行動互聯網中的連續存取問題。當行動節點(MN)從一個網路移動到另一個網路時,需要一些處理以使MN從先前網路切離並連接到新網路以避免網路斷線,這過程被稱為換手。
    為了減少行動性管理的換手延遲和訊息負荷, IETF組織已經討論並開發了兩種以網路為基礎的協定,稱為代理行動IPv6(PMIPv6)和分散式行動性管理(DMM)。然而,由於換手延遲時間較長與高負荷的訊息情形降低了網路效能的問題。在本論文中,行動性管理的擴展方式被提出並加以分析。兩種採用的方法是(1)基於群組的方法:在PMIPv6 中使用“掛接”概念與在DMM中使用媒體獨立換手(MIH)方式和(2)使用樂觀方法:(i)基於媒體獨立方式的代理移動IPv6(BFMIH-PMIPv6)協定之反向快速換手機制和(ii)具有DMM最佳路由的軟體定義網路(SDN)之快速換手機制。提出了群組的技術是用於處理多節點的換手,即在以MIH為基礎之PMIPv6和部分DMM架構中群組換手。多個MN可能在同一時間從同樣的原先連線網路移動到同樣的新網路段進行換手處理。然而,PMIPv6和部分DMM的目前主要著重在單一個MN而不是多個MN。如果每個MN單獨進行換手,則在換手處理期間會造成大量控制訊息的使用。如果這些MN可以形成一個群組,則可以減少PMIPv6和DMM換手的控制訊息的數量和換手等待時間。’ 掛接 '概念可用於將多個節點群組在一起以增強PMIPv6的效能。將802.21 MIH整合到部分DMM中是為了提供群組換手所需要用到的第二層訊息。其結果為整合第2層(L2)和第三層(L3)可以降低群組方法的訊息成本,因此減少了平均換手延遲時間、網路負載和封包遺失率。提出了樂觀的方法,以使PMIPv6和DMM的換手具有更高的機會可以進入快速換手的預測模式。提出了樂觀的方法,以使PMIPv6和DMM的切換具有更高的處於預測模式的機會。其結果可以在MN斷開目前連線路由器與連接新的路由器之前,可以完成這兩個協定的快速換手準備。此外,樂觀方法利用SDN控制器找到路徑共同交叉點的路由器,以取得從CN到MN的最佳路由以轉送正在傳輸的封包。因此,可以改善DMM中三角形路由的問題。以這種方式,可以在減少封包遺失和換手等待時間而改善換手效能。

    One of the most important issues for all-IP mobile networks is mobility management, i.e., continuous accessing in wired and wireless&mobile Internet. When a mobile node (MN) moves from one network to the other one, it needs some processing for MN to detach from the previous network and attach to a new network to avoid network’s disconnection, which is referred as handover. To reduce the handover latency and signaling overhead for mobility management, two networked-based protocols, which are called Proxy Mobile IPv6 (PMIPv6) and Distributed Mobility Management (DMM), have been discussed and developed by Internet Engineering Task Force (IETF). However, these protocols suffer from the problem of inefficient network performance due to long handover latency and high signaling cost. In the dissertation, some extension of mobility management schemes was proposed and analyzed. Two adopted approaches are (1) the group-based approach using the ‘hitch on’ concept for PMIPv6 and utilizing Media Independent Handovers (MIH) for DMM-based ones and (2) the optimistic approach using (i) the Backward Fast Media Independent Handover for Proxy Mobile IPv6 (BFMIH-PMIPv6) and (ii) the Software Defined Network (SDN)-based fast handover with the optimal routing for DMM. The group-based technique was proposed for processing the multi-node’s handover, i.e., group handover, in MIH-enabled PMIPv6 and the partial DMM. It is possible that several MNs are doing the handover processing from the same previous network to the same new network around the same time. However, the current schemes of PMIPv6 and partial DMM mainly focus on single MN instead of multiple MNs. If each MN does handover individually, it causes a lot of signaling messages during the handover processing. If these MNs can be formed as a group, the number of control messages and the handover latency of PMIPv6’s and DMM’s handover can be reduced. The ‘hitch on’ concept can be used for grouping multiple nodes together to enhance the performance of PMIPv6. The integration of 802.21 MIH into the partial DMM is to provide a group-based handover. As a result, the signaling cost of the proposed group-based method can be reduced in both layer 2 (L2) and layer 3 (L3) and therefore the average handover delay time, network load and packet loss rate are reduced. The optimistic approach was proposed to let the handover of PMIPv6 and DMM have the higher chance of being in the predictive mode. As a result, the handover preparation of these two protocols can be finished before MN disconnecting from the current access router’s domain and connecting with the new access router’s domain. Furthermore, the optimistic approach utilizes the SDN Controller to find the intersection agent router for having the optimal route from CN to MN to forward the on-going-packets. Consequently, the problem of triangle routing in DMM can be relieved. In this way, the handover performance can be improved in terms of reducing the packet loss and handover latency.

    Contents Abstract i 中文摘要 iii List of Abbreviations iv Contents vii List of Figures ix Chapter 1 Introduction 1 Chapter 2 Preliminary 10 2.1 Proxy Mobile IPv6 (PMIPv6) 10 2.2 Fast handover for PMIPv6 (PFMIPv6) 11 2.3 IEEE 802.21 - enabled handover 12 2.4 The partially Distributed Mobility Management 13 Chapter 3 Related work 17 3.1 PMIPv6 17 3.2 Multi-node handover 18 3.3 Distributed Mobility Management (DMM) 22 3.4 SDN-related Mobility Protocols 23 Chapter 4 The Group-Based Handover Control Scheme for PMIPv6 (GB-PMIPV6) Method 26 4.1 Scenarios 26 4.2 The Proposed method 27 4.3 Performance Analysis 33 4.3.1 Handover Delay Analysis 34 4.3.2 Packet Loss Analysis 37 4.3.3 Throughput Analysis 38 4.3.4 Packet Size Analysis 40 Chapter 5 The Bursty Multi-node Handover Scheme for Mobile Internet Using the Partially DMM (BMH–DMM) Method 42 5.1 The proposed BMH-DMM control scheme 42 5.2 Analytic network model and mobility model 49 5.2.1 User Mobility and Traffic Model 49 5.2.2 Analytical Model for Performance Evaluation 52 5.3 Performance Analysis 56 5.3.1 Signaling Cost 57 5.3.2 Network Load 59 5.3.3 Average Handover Latency 60 5.3.4 Packet Loss 62 Chapter 6: The Backward Fast Media Independent Handover for Proxy Mobile IPv6 Control Scheme (BFMIH-PMIPV6) over Heterogeneous Wireless Mobile Networks 66 6.1 The Proposed BFMIH-PMIPV6 method 66 6.2 Performance Analysis 69 6.2.1 Handover Latency 69 6.2.2 Packet Transmission Path for Handover Analysis 71 6.3 Simulation 72 6.3.1 Handover Latency Analysis 72 6.3.2 Packet Loss Analysis 74 6.3.3 Throughput Analysis 75 Chapter 7 A Software Defined Network (SDN)-based Fast Handover with the Optimal Routing Control Method for Distributed Mobility Management (DMM) 77 7.1 The proposed SDN-FHOR-DMM control scheme 77 7.1.1 The handover processing when MN moves from MAAR1 to MAAR2 78 7.1.2 The handover processing when MN moves from MAAR2 to MAAR3 80 7.1.3 The handover processing when MN moves from MAAR3 to MAAR4 83 7.2 Analytic Network And Mobility Model 87 7.2.1 Network and Mobility Model 88 7.2.2 Analytical Model for Performance Evaluation 89 7.2.3 The Performance Analysis 93 7.2.4 Performance comparison with the benchmark method 100 7.2.5 Performance analysis based on the implementation over NS-3 101 Chapter 8. Conclusion and Future Work 105 Bibliography 108 Publication List 115

    [1] Koodli, R., (Ed.). (2009, July), “Mobile IPv6 Fast Handovers,” RFC 5568.
    [2] Gundavelli, S., et al. (2007, November), “Proxy Mobile IPv6,” RFC 5213.
    [3] Chan, A., Liu, D., Seite, P., Yokota, H., & Korhonen, J, “Requirements for distributed mobility management,” IETF RFC 7333, 2014.
    [4] D. Liu and P. Seite, “Distributed mobility management: Current practices and gap analysis,” RFC 7429, 2015.
    [5] Peña Llerena, Y., Gondim, P. R., and Lloret, J. “Improving throughput in DMM with mobile‐assisted flow mobility,” Transactions on Emerging Telecommunications Technologies, pp. 1-16, January 2018. DOI: 10.1002/ett.3257
    [6] H. Yokota, K. Chowdhury, R. Koodli, B. Patil, and F. Xia, “Fast Handovers for Proxy Mobile IPv6,” IETF RFC 5949, 2010.
    [7] P. S. Kim, “An Alternative IEEE 802.21-Assisted PMIPv6 to Reduce Handover Latency and Signaling Cost,” Engineering Letters, vol. 21, no. 2, pp.68-71, 2013.
    [8] Pandey, D., Bashir, F., Kee, G., and Pyun, J, “Performance Evaluation of Vertical Handover for IEEE 802.21 Enabled Proxy Mobile IPv6,” in Proceeding International Conference on Computing, Management and Telecommunications, Jan, Ho Chi Minh, Vietnam, pp. 27–31. IEEE, USA, 2013.
    [9] Krishnan, Suresh, Fuad Abinader, Domagoj Premec, Sri Gundavelli, and Kent Leung. "Bulk Binding Update Support for Proxy Mobile IPv6," 2012.
    [10] C. J. Bernardos, A. De la Oliva, and F. Giust, “A PMIPv6-based solution for distributed mobility management”, Internet-Draft (Work in Progress), draft-bernardos-dmm-pmip, 2017.
    [11] Giust, Fabio, Carlos J. Bernardos, and Antonio De La Oliva, “Analytic evaluation and experimental validation of a network-based IPv6 distributed mobility management solution,” IEEE Transactions on Mobile Computing, vol. 13, no. 11, pp. 2484-2497.
    [12] Bertin, P., Lee, J. H., and Seite, P, “istributed Mobility Anchoring,” draft-seite-dmm-dma-06.txt, 2015.
    [13] S. Jeon, S. Figueiredo, R. L. Aguiar, and H. Choo, “Distributed Mobility Management for the Future Mobile Networks: A Comprehensive Analysis of Key Design Options,” IEEE Access, vol. 5, pp. 11423-11436, 2017.
    [14] Y.-S. Chen, C.-S. Hsu, and H.-K. Lee. “An enhanced group mobility protocol for 6LoWPAN-based wireless body area networks,” IEEE Systems Journal, Vol. 14, No. 4, pp. 797–807, 2014.
    [15] Ming Tao, Mianxiong Dong, Kaoru Ota, and Zhimin He. “Multiobjective Network Opportunistic Access for Group Mobility in Mobile Internet”, IEEE Systems Journal, Volume PP Issue 9, pp 1-10, 2016.
    [16] H.-L. Fu, P. Lin, H. Yue, G.-M. Huang, and C.-P. Lee. “Group mobility management for large-scale machine-to-machine mobile networking,” IEEE Transactions on Vehicular Technology. Vol 63, No. 3, pp. 1296– 1305, 2014.
    [17] H. Song, J. Kim, J. Lee, and H. S. Lee. “Analysis of Vertical Handover Latency for IEEE 802.21-enabled Proxy Mobile IPv6,” In Proceedings of the 13th International conference on advanced communication technology (ICACT), 2011. pp. 1059 – 1063.
    [18] M. I. Sanchez, M. Uruena, A. De La Oliva, J. A. Hernandez,
    and C. J. Bernardos, “On providing mobility management in WOBANs: integration with PMIPv6 and MIH,” IEEE Communications Magazine, Vol. 51, no. 10, pp. 172–181, 2013.
    [19] H. Yokota, K. Chowdhury, R. Koodli, B. Patil, and F. Xia, “Fast Handovers for Proxy Mobile IPv6,”, 2010. In: IETF RFC 5949.
    [20] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.
    [21] F. Granelli, A. Gebremariam, M. Usman, F. Cugini, V. Stamati, M. Alitska, and P. Chatzimisios, “Software defined and virtualized wireless access in future wireless networks: scenarios and standards,” Communications Magazine, IEEE, vol. 53, no. 6, pp. 26–34, June 2015.
    [22] L. M. Contreras, L. Cominardi, H. Qian, and C. J. Bernardos, "Software-Defined Mobility Management: Architecture Proposal and Future Directions." Mobile Networks and Applications, vol. 21, no. 2, pp.226-236, 2016.
    [23] A. Bradai, A. Benslimane, and K. D. Singh, “Dynamic anchor points selection for mobility management in Software Defined Networks”, Journal of Network and Computer Applications, vol 57, pp.1-11, 2015.
    [24] R. Koodli, H. Yokota, K. Chowdhury, and B. Patil, “Fast handovers for proxy mobile ipv6,” RFC 5949, September 2010.
    [25] C.M. Huang and M.S. Chiang, “A Backward Fast Handover Control Scheme for Mobile Internet (BFH-MIPv6)”, Journal of Internet Technology , vol. 19, no. 2, pp. 45-53, 2018, DOI: 10.3966/160792642018031902005
    [26] M.S. Chiang, C.M. Huang, D.T. Dao and B.C Pham, “The Backward Fast Media Independent Handover for Proxy Mobile IPv6 Control Scheme (BFMIH-PMIPV6) over Heterogeneous Wireless Mobile Networks,” Journal of Information Science and Engineering, vol.34, no.3, DOI: 10.6688/JISE.2018.34.3.12
    [27] L. A. Mphatsi, “A scalable fast handovers proxy mobile ipv6 scheme for 4g wireless networks,” IJCSNS International Journal of Computer Science and Network Security, vol. 16, no. 6, pp. 52 – 61, 2016.
    [28] A. Rasem, M. St-Hilaire, and C. Makaya, “Efficient Handover with Optimized Localized Routing for Proxy Mobile IPv6” Telecommunication Systems, vol. 62, no. 4, pp. 675-693, 2016.
    [29] Kang B, Kwon N, Choo H, “Developing route optimization-based pmipv6 testbed for reliable packet transmission,” IEEE Access, vol. 4, pp. 1039–1049, 2016.
    [30] De La Oliva, A., Banchs, A., Soto, I., Melia, T., and Vidal, A, “An Overview of IEEE 802.21: Media-Independent Handover Services,” IEEE Wireless Communications, vol. 15 no. 4, pp. 96-103, 2008.
    [31] P. Payaswini and D.H Manjaiah, “Simulation and Performance Analysis of Vertical Handoff between Wi-Fi and WiMAX using Media Independent Handover Services”, International Journal of Computer Applications, Vol. 87, No. 4, pp 14-20, Feb. 2014.
    [32] Sharma, V., t Agarwal, A., Abdul Qadeer, M., “Media Independent Handover (IEEE 802.21): Framework for Next Generation Vertical Handover Protocols,” In International Conference on Computational Intelligence and Communication Systems Proc. 2011, India, October, pp. 507–511. IEEE, USA.
    [33] H. H Kim, S. C Park and M. K. Yi, “Fast-Handover Mechanism between 802.11 WLAN and 802.16 WiMax with MIH in PMIPv6”, Proceedings of the 4th International Conference on Ubiquitous Information Technologies & Applications (ICUT’09), pp. 1-6, 2009.
    [34] T. Melia, F. Giust, R. Manfrin, A. de la Oliva, C. J. Bernardos, and M. Wetterwald, “IEEE 802.21 and Proxy Mobile IPv6: A Network Controlled Mobility Solution,” Proceedings of the 2011 Future Network and Mobile Summit Conference Proc. 2011, Poland, Warsaw, June 15-17, pp. 1–8. IEEE, USA.
    [35] H. Song, J. Kim, J. Lee, and H. S. Lee, “Analysis of Vertical Handover Latency for IEEE 802.21-enabled Proxy Mobile IPv6,” Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT) Proc. 2011, Gangwon-Do, Korea pp. 1059 – 1063. IEEE, USA.
    [36] J. Wozniak 2016. “Mobility management solutions for current IP and future networks,” Telecommunication Systems, Vol. 6, No 2, 2016, pp. 257–275.
    [37] K.-S. Kong, W. Lee, Y.-H. Han, M.-K. Shin, and H. You, “Mobility management for All-IP mobile networks: mobile IPv6 vs. proxy mobile IPv6,” IEEE Wireless Communications, Vol. 15, no. 2, pp. 36–45, 2008.
    [38] J. Kim, S. Koh, and N. Ko, “B-PMIPv6: PMIPv6 with Bicasting for Soft Handover,” ICACT, 15-18 February, 2009.
    [39] J. I. Kim and S. J. Koh, “Proxy Mobile IPv6 with partial bicasting for
    seamless handover in wireless networks,” in Proc. ICOIN, Barcelona,
    Spain, Jan. 26–28, 2011, pp. 352–356.
    [40] H. Y. Choi, K. R. Kim, H. B. Lee, S. G. Min, and Y. H. Han, “Smart
    buffering for seamless handover in proxy mobile IPv6,” Wireless Commun. Mobile Comput., Vol. 11, no. 4, pp. 491–499, Apr. 2011.
    [41] A. K. Quoc, D.S. Kim, and H. Choo. “A novel scheme for preventing out-of-order packets in fast handover for Proxy Mobile IPv6,” In International conference on information networking, 2014. pp. 422–427.
    [42] M.-S. Kim, and S.K Lee. “A novel load balancing scheme for PMIPv6 based networks, ” International journal of electronics and communications, Vol. 64, No. 6, 2010. pp. 579–583.
    [43] C. M. Huang, Chiang Meng-Shu, and Pham Binh Chau. “A Load-Considered Fast Media Independent Handover Control Scheme for Proxy Mobile IPv6 (LC-FMIH-PMIPv6) in the Multiple-Destination Environment”. In: The 2015 IEEE International black sea conference on communications and networking (BlackSeaCom), 2015.
    [44] M.-S. Chiang, C.-M. Huang, and D. D. Tuan, “Fast handover control scheme for multi-node using the group-based approach”, IET networks, VOL. 4, NO. 1, pp. 44-53, January 2015.
    [45] D’Oro, S., Galluccio, L., Morabito, G., & Palazzo, S, “Exploiting object group localization in the Internet of Things: Performance analysis,” IEEE Transactions on Vehicular Technology, vol. 64, no. 8, pp. 3645–3656, 2015.
    [46] Chatzikokolakis, Chatzikokolakis K., Kaloxylos A., Spapis P., Zhou C., Bulakci Ö., Alonistioti N. “Context-Aware Location Management, Management and Security in the Age of Hyperconnectivity”, Management and Security in the Age of Hyperconnectivity, LNCS 9701, pp. 155-159, 2016.
    [47] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, (2005). Network mobility (NEMO) basic support protocol. IETF RFC 3963.
    [48] Chao-Hsien Lee, Chung-Ming Huang and Po-Han Tseng, “Multi-homed SIP-based network mobility for the scheduled public transit service,” Journal of Wireless Communications and Mobile Computing, vol. 15, no. 18, pp. 2191–2205, 2014.
    [49] Y. Li, Y. Jiang, H. Su, D. Jin, L. Su, and L. Zeng, “A Group Based Handoff Scheme for Correlated Mobile Nodes in Proxy Mobile IPv6,” The IEEE Global Telecommunications Conference Proc. GLOBECOM 2009, Honolulu, Hawaii, December, pp. 1-6. IEEE, USA.
    [50] Jianfeng Guan, Ilsun You, Changqiao Xu, and Hongke Zhang, “The PMIPv6-Based Group Binding Update for IoT Devices,” Mobile Information Systems, Vol. Article ID 7853219, pp. 1-8, 2016.
    [51] Lee, C. H., Huang, C. M., and Tseng, P. H., “Multihomed SIP‐based network mobility for the scheduled public transit service,” Wireless Communications and Mobile Computing, vol. 14, no. 1, 74-84.
    [52] Ernest, P. P., Falowo, O. E., and Chan, H. A, “Design And Performance Evaluation of Distributed Mobility Management Schemes for Network Mobility,” Journal of Network and Computer Applications, vol. 61, pp. 46-58, 2016.
    [53] Ernest, P. P., Chan, H. A., Xie, J., and Falowo, O. E, “Mobility management with distributed mobility routing functions,” Telecommunication Systems, vol. 59, no. 2, 229-246, 2016.
    [54] M.-S. Kim and S. Lee, “Enhanced Network Mobility Management for Vehicular Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp. 1329 – 1340, 2016.
    [55] Ko, H., Lee, G., Pack, S., and Kweon, K, “Timer-based bloom filter aggregation for reducing signaling overhead in distributed mobility management,” IEEE Transactions on Mobile Computing, vol. 15, no. 2, pp. 516-529, 2016.
    [56] Yi, L., Zhou, H., Huang, D., and Zhang, H, “D-PMIPv6: A Distributed Mobility Management Scheme Supported by Data and Control Plane Separation,” Mathematical and Computer Modelling, vol. 58, no. 5, pp. 1415-1426, 2013.
    [57] Yan, Z., Zeadally, S., Zhang, S., Guo, R., & Park, Y. J, “Distributed mobility management in named data networking,” Wireless Communications and Mobile Computing, vol. 16, no. 13, pp. 1773-1783, 2013.
    [58] Hua Yang, Naoki Wakamiya, Masayuki Murata, Takanori Iwai, and Satoru Yamano, “An Autonomous and Distributed Mobility Management Scheme in Mobile Core Networks,” EAI Endorsed Trans. Creative Technologies, vol. 3, no. 8, pp. 35-42, 2013.
    [59] Balfaqih, M., Ismail, M., Nordin, R., Rahem, A. A., and Balfaqih, Z, “Fast handover solution for network-based distributed mobility management in intelligent transportation systems,” Telecommunication Systems, vol. 64, no. 2, pp. 325-346, 2017.
    [60] Y. Wang and J. Bi, “A solution for IP mobility support in software defined networks,” in Proceedings of the 23rd IEEE International Conference on Computer Communication and Networks (ICCCN), pp. 1-8, 2014, IEEE.
    [61] Y. Wang, J. Bi, and K. Zhang, "Design and implementation of a software-defined mobility architecture for IP networks." Mobile Networks and Applications vol. 20, no. 1, pp. 40-52, 2015.
    [62] S. M. Raza, D. S. Kim, and H. Choo, “Leveraging PMIPv6 with SDN”, in Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication, no. 13, pp.1-8, ACM.
    [63] S. M. Raza, P. Thorat, R. Challa, and H. Choo, “On demand inter domain mobility in SDN based Proxy Mobile IPv6,” In Proceedings of the 31st IEEE Information Networking (ICOIN), pp. 194-199, 2017, IEEE.
    [64] Y.-h. Kim, H.-k. Lim, K.-h. Kim, and Y.-H. Han, "A SDN-based distributed mobility management in LTE/EPC network." The Journal of Supercomputing, vol. 73, no. 7, pp. 2919-2933, 2017.
    [65] Guck, J. W., Van Bemten, A., Reisslein, M., & Kellerer, W, “Unicast QoS routing algorithms for SDN: A comprehensive survey and performance evaluation,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 388–415, 2018.
    [66] J. Ribeiro, P. Marques, and J. Rodriguez, “Simulation of 802.21 Handovers Using ns-2,” Journal of Computer Systems, Networks, and Communications, VOL. 2010, Article ID 794749, 11 pages.
    [67] N. M. Tarbani and B.R. Chandavarkar, “Implementation of AAA Server for PMIPv6 in NS-2. Advances in Parallel Distributed Computing,” The series of Communications in Computer and Information Science, vol. 203, pp. 523-531, pp 523-531.
    [68] Chen, L., Shu, Y., Gu, Y., Guo, S., He, T., Zhang, F., and Chen, J, “Group-based Neighbor Discovery in Low-duty-cycle Mobile Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp.1996-2009, 2009.
    [69] Ghazali, N.E., Ariffin, S.H., Wahab, N.H.A., Ain'Amiruddin, N. and Fisal, N, “Handover threshold analysis using velocity for Proxy Mobile IPv6,” In Proceedings of the IEEE Asia Pacific Wireless and Mobile, pp. 36-41, 2014.
    [70] X. Wang, X. Lei, P. Fan, R. Q. Hu, and S.-J. Horng, “Cost analysis of movementbased location management in PCS networks: an embedded Markov chain approach,” IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp.1886-1902, 2014.
    [71] Lee, J. H., Bonnin, J. M., You, I., and Chung, T. M, “Comparative Handover Performance Analysis of IPv6 Mobility Management Protocols,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1077-1088, 2013.
    [72] Gross, D., & Shortle, J. F. (2008). Fundamentals of Queueing Theory. London: Wiley
    [73] J.-H. Lee and T.-M. Chung, "How much do we gain by introducing route optimization in Proxy Mobile IPv6 networks?," Annals of telecommunication, vol. 65, no. 5-6, pp. 233-246, 2010.
    [74] Zubair, M., Kong, X., & Mahfooz, S., “DMAM: distributed mobility and authentication mechanism in next generation networks. Security and Communication Networks,” vol. 8, no. 5, pp. 845-863, 2015.
    [75] ns-2. The network simulator, version 2.29, Nov. 2005. http://www.
    isi.edu/nsnam/ns/.
    [76] F.F. Liza, Dr. W. Yao “Implementation Architecture of Proxy Mobile IPv6 Protocol for NS2 Simulator software”, Proceedings of the International Conference on Communication Software and Networks IEEE, pp 286-291, Feb 2009.
    [77] J. Ribeiro, P. Marques, and J. Rodriguez, "Simulation of 802.21 Handovers Using ns-2", Journal of Computer Systems, Networks, and Communications, Vol. 2010, Article ID 794749, 11 pages, 2010.
    [78] S. Pack, X. Shen, J. Mark, and J. Pan, “Adaptive Route Optimization in Hierarchical Mobile IPv6 Networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 8, August 2007, pp. 903-914.
    [79] Network Simulator NS3, https://www.nsnam.org.
    [80] Ammar, D., Begin, T., & Guerin-Lassous, I. (2011). A new tool for generating realistic internet traffic in ns-3. In Proceedings of the 4th ICST International Conference on Simulation Tools and Techniques, 81-83.

    下載圖示 校內:2024-08-12公開
    校外:2024-08-12公開
    QR CODE