簡易檢索 / 詳目顯示

研究生: 江烈光
Chiang, Lieh-Kwang
論文名稱: 曲形樑的自由與強迫振動分析
Free and forced vibration analyses of curved beams
指導教授: 吳重雄
Wu, Jong-Shyong
學位類別: 博士
Doctor
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 92
中文關鍵詞: 曲形樑勁度矩陣剪切變形位移函數質量矩陣
外文關鍵詞: mass matrix, displacement function, stiffness matrix, curved beam, shear deformation
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文之主旨在於使用有限元素法來求數種曲形樑的自然頻率與振態,以及這些曲形樑承受移動負荷作用時的強迫振動反應。因為一曲形樑的面內與面外特性不同,故通常都被分開來研究,本文亦採用這種方式,各別推導一曲形樑元素的面內與面外運動的性質矩陣。其中,各二維樑元素的勁度矩陣是從力與位移的關係式求得,而質量矩陣則從動能方程式求得,為使本文理論,能同時適用於薄樑與厚樑,吾人在推導曲形樑元素的性質矩陣時,曾將剪切變形與旋轉慣性矩效應,全部納入考慮。接著,吾人將所有曲樑元素的性質矩陣加以組合,並施加指定的邊界條件,以求得整根曲樑的總勁度矩陣及質量矩陣。根據這些性質矩陣,吾人便可求得一曲樑的面內與面外振動的自然頻率與振態,若再考慮移動負荷所引起的外施負荷向量,吾人亦可求得該曲形樑承受移動負荷作用時的強迫振動反應。除了傳統的圓弧形曲樑外,由一片段曲樑的兩端,各連接一片段直樑所構成的混合式曲樑,其動態特性本文亦加以探討。上述吾人使用曲樑元素所得的結果,除了與現有文獻比較外,亦與使用傳統直樑元素所得的結果相比較,以各項結果良好的吻合,來證明本文理論與電算程式的可靠性。

    The objective of this thesis is to determine the natural frequencies and mode shapes of the curved beams and the forced vibration responses of these beams subjected to moving loads by using the finite element method. Because the in-plane and out-of-plane characteristics of a curved beam are different, the associated dynamic behaviors of a curved beam are usually studied respectively. For this reason, the property matrices for the in-plane motions and those for the out-of-plane motions of a curved beam are also derived respectively in this paper. In which, each two-dimensional (2-D) stiffness matrix of a curved beam element is obtained from the relations between forces and displacements, while each 2-D element mass matrix is obtained from the equation of kinetic energy. To assure the presented theory to be available for both the thin curved beams and the thick curved beams, the effects of shear deformation and rotary inertia are taken into consideration when the above-mentioned property matrices of the curved beam element are derived. Next, the last element property matrices are assembled and the specified boundary conditions are imposed to establish the overall stiffness and mass matrices of the entire curved beam. Based on these overall property matrices, one may determine the natural frequencies and mode shapes of in-plane and out-of-plane vibrations of a curved beam and the associated forced vibration responses due to moving loads. In addition to the classical circular curved beam, the dynamic characteristics of a hybrid beam composed of a curved beam segment connecting two identical straight beam segments at its two ends are also studied. The numerical results obtained from the presented curved beam elements are compared with both the existing literature and those obtained from the conventional straight beam elements, the excellent agreement between the associated results assure the reliability of the presented theory and the computer programs developed for this paper.

    摘 要 I 誌 謝 II Abstract III 目 錄 IV 表 目 錄 VII 圖 目 錄 VIII 符 號 說 明 XI 第一章 緒 論 1 1- 1研究動機 1 1- 2文獻回顧 1 1-2-1面內(In-plane)分析之文獻回顧 1 1-2-2面外(Out-of-plane)分析之文獻回顧 2 1-2-3由移動負荷引起振動的文獻回顧 4 1-3研究方法 5 第二章 面內曲樑元素分析 7 2-1基本假設 7 2-2曲樑元素之位移函數 8 2-3曲樑元素之勁度矩陣 14 2-4曲樑元素的質量矩陣 16 2-5座標轉換 18 第三章 面外曲樑元素分析 21 3-1基本假設 21 3-2曲樑元素之位移函數 22 3-3曲樑元素之勁度矩陣 25 3-4曲樑元素的質量矩陣 28 3-5座標轉換 29 3-5-1一階段(One-Stage)座標轉換 29 3-5-2二階段(Two-Stage)座標轉換 31 第四章 動態分析 35 4-1自由振動分析 35 4-2阻尼矩陣 35 4-3外施負荷 36 4-3-1面內外施負荷 36 4-3-2面外外施負荷 39 4-4 Newmark直接積分法 42 第五章 數值分析結果與討論 44 5-1電腦程式可靠性的驗證 44 5-1-1曲樑面內振動自然頻率的驗證 44 5-1-2曲樑面外振動自然頻率的驗證 46 5-1-3曲樑強迫振動反應的驗證 47 5-2曲樑面內振動之數值分析結果 49 5-2-1剪切變形與旋轉慣性矩對薄樑之影響 49 5-2-2剪切變形與旋轉慣性矩對厚樑的影響 54 5-2-3混合樑之自由振動分析 57 5-2-4兩端固定曲樑的強迫振動分析 59 5-2-5混合拱樑之強迫振動分析 63 5-2-6旋轉慣性矩對拱樑強迫振動反應的影響 65 5-2-7負荷移動速度對拱樑中點最大彎矩的影響 67 5-3曲樑面外振動的數值分析結果 68 5-3-1細長比( )對水平曲樑自然頻率的影響 68 5-3-2混合水平樑的自然頻率與振態 74 5-3-3細長比( )對水平曲樑強迫振動反應的影響 76 5-3-4混合水平樑的強迫振動反應分析 77 第六章 結 論 80 參考文獻 82 附錄一: 係數矩陣 的積分結果(面內) 87 附錄二: 係數矩陣 的積分結果(面外) 89 作者簡歷 91

    參考文獻
    1. A.B. Sabir and D.G. Ashwell, ‘A comparison of curved beam finite elements when used in vibration problems,’ Journal of Sound and Vibration, 18(4), 555-563, 1971
    2. D.G. Ashwell, A.B. Sabir and T.M. Roberts, ‘Further studies in the application of curved finite elements to circular arches,’ Int. J. of Mechanical Science, 13, 507-517, 1971
    3. A.O. Lebeck and J.S. Knowlton, ‘A finite element for the three-dimensional deformation of a circular ring,’ Int. J. for Numerical Methods in Engineering, 21, 421-435, 1985
    4. R. Palaninathan and P.S. Chandrasekharan, ‘Curved beam element stiffness matrix formulation,’ Computers & Structures, 21(4), 663-669, 1985
    5. H.K. Stolarski and Y.M. Chiang, ‘The mode-decomposition, formulation of curved, two-dimensional structural elements,’ Int. J. for Numerical Methods in Engineering, 28, 145-154 ,1989
    6. H.S. Ryu and H.C. Sin, ‘Curved beam elements based on strained fields,’ Communications in Numerical Methods in Engineering, 12, 767-773, 1996
    7. P. Litewka and J. Rakowski, ‘An efficient curved beam finite element,’ Int. J. for Numerical Methods in Engineering, 40, 2629-2652, 1997
    8. P. Litewka and J. Rakowski, ‘The exact thick arch finite element,’ Computers & Structures, 68, 369-379, 1998
    9. M. Petyt and C.C. Fleischer, ‘Free vibration of a curved beam’, Journal of Sound and Vibration, 18(1), 17-30, 1971
    10. C.H. Yoo and J.P. Fehrenbach, ‘Natural frequencies of curved girders,’ Journal of the Engineering Mechanics Division, ASCE, Vol. 107, No. EM2, Apr., 339-354, 1981
    11. P. Litewka, J. Rakowski, ‘Free vibrations of shear-flexible and compressible arches by FEM,’ In. J. for Numerical Methods in Engineering, 52, 273-286, 2001
    12. S.K. Chaudhuri and S. Shore, ‘Dynamic analysis of horizontally curved I-girder bridges,’ Journal of the Structural Division, ASCE, Vol. 103, No. ST8, Proc. Paper 13121, Aug., 1589-1604, 1977
    13. S.K. Chaudhuri and S. Shore, ‘Thin walled curved beam finite element,’ Journal of the Engineering Mechanics Division, ASCE, Vol. 103, 921-937 Oct. 1977
    14. J.S. Wu and L.K. Chiang, ‘Free vibration analysis of arches using curved beam elements,’ Internal J. for Numerical Methods in Engineering, Vol.58, p.1907-1936, 2003
    15. S. S. Rao, “Effects of Transverse Shear and Rotatory Inertia on The Coupled Twist-Bending Vibrations of Circular Rings,” Journal of Sound and Vibration, 16(4), 551-566, 1971.
    16. J. Kirkhope, “Out-of-Plane Vibration of Thick Circular Ring,” Journal of the Engineering Mechanics Division, ASCE, 102, EM2, 239-247, April 1976.
    17. J.M.M. Silva and A.P.V. Urgueira, “Out-of-Plane Dynamic Response of Curved Beams ─An Analytical Model,” Int. J. Solid Structures, 24(3), 271-284, 1988.
    18. T.M. Wang, R.H. Nettleton and B. Keita, “Natural Frequencies for Out-of-Plane Vibrations of Continuous Curved Beams,” J. of Sound and Vibration, 68(3), 427-436, 1980.
    19. W.B. Bickford and S.P. Maganty, “On the Out-of-Plane Vibrations of Thick Rings,” J. of Sound and Vibration, 108(3), 503-507, 1986.
    20. M. Kawakami, T. Sakiyama, H. Matsuda and C Morita, “In-Plane and Out-of-Plane Free Vibrations of Curved Beams With Variable Sections,” J. of Sound and Vibration, 187(3), 381-401, 1995.
    21. Y.B. Yang and C.M. Wu, “Dynamic Response of A Horizontally Curved Beam Subjected to Vertical and Horizontal Moving Loads,” J. of Sound and Vibration, 242(3), 519-537, 2001.
    22. B.K. Lee, S.J. Oh and K.K. Park, “Free Vibrations of Shear Deformable Circular Curved Beams Resting on Elastic Foundation,” Int. J. of Structural Stability and Dynamics, 2(1), 77-97, 2002.
    23. R. Davis, R. D. Henshell and G. B. Warburton, “Curved Beam Finite Elements for Coupled Bending and Torsional Vibration,” Earthquake engineering and structural dynamics, Vol.1, 165-175, 1972.
    24. W.P. Howson and A.K. Jemah, “Exact Out-of-Plane Natural Frequencies of Curved Timoshenko Beams,” Journal of Engineering Mechanics, ASCE, 125(1), 19-25, Jan. 1999.
    25. L. Fry’ba, ”Vibration of Solid and Structure under Moving Loads”, Research of Institute of Transport, Prague, 1971.
    26. C.R. Steele, ”The Timoshenko Beam with a Moving Load”, J. of Appl. Mech. Trans. Of A.S.M.E., Vol.35, pp.481-488, Septement, 1968.
    27. C.R. Steele, “Nonlinear Effects in the Problem of the Beam on a Foundation with a Moving Load”, Int. J. of Solids & Structures, Vol.17, pp.1171-1198, 1971.
    28. E.C. Ting, J. Genin and J.H. Ginsberg, “A General Algorithm for Moving Mass Problem”. J. of Sound and Vibration Vol.33, No.1, pp.49-58, 1974.
    29. S.I. Suzuki, “Dynamic Behavior of a Finite Beam Subjected to Travelling Loads with Acceleration“, J. of Sound and Vibration, Vol.55 No.1, pp.65-70, 1977
    30. G. Michaltsos, D. Sophianpoulos, and A.N. Kounadis, “The Effect of a Moving Mass and other Parameters on the Dynamic Response of a Simply Supported beam”, J. of Sound and Vibration, Vol.191, No.3, pp.357-362, 1996
    31. J. Hino, T. Yoshimura and K. Konishi and N. Ananthanarayana, “A Finite Element Method Predication of the Vibration of a Bridge Subjected to a Moving Vehicle Load”, J. of Sound and Vibration, Vol.96, No.1, pp.45-53, 1984.
    32. J. Hino, T. Yoshimura and K. Konishi and N. Ananthanarayana, “Vibration Analysis of a Non-Linear Beam Subjected to Moving Loads by Using the Galerkin Method”, J. of Sound and Vibration, Vol.104, No.2, pp.179-186, 1986.
    33. J. S. Wu and C. W. Dai, ”Dynamic Response of Multiple-span Non-uniform Beam Due to Moving Load”, J. of Structure Engineering, Vol.113, No.3, pp.458-474, March, 1987.
    34. J. S. Wu and M. L. Lee and T. S. Lai, “The Dynamic Analysis of Flat Plate Under a Moving Load by the Finite Element Method”, Int. J. for Numerical Methods in Engineering, Vol.24, pp.743-762, 1987.
    35. T. Yoshimura and M. Sugimoto, “Active Suspension for a Vehicle Travelling on Flexible Beams with an Irregular Surface”, J. of Sound and Vibration, Vol.138, No.3, pp.233-445, 1990.
    36. J. S. Wu and P.Y. Shih, “The Dynamic Behavior of a Finite Railway Under the High-Speed Multiple Moving Forces by Using Finite Element Method”, Communications in Numerical Methods in Engineering, Vol. 16, pp.851-866, 2000.
    37. K. J. Bathe, Numerical Methods in Finite Element Analysis, Prentice, Inc. 1976.
    38. K. J. Bathe, Finite Element Procedure in Engineering Analysis, Prentice-Hall, Inc., 1982.
    39. J. S. Przemieniecki, Theory of Matrix Structure Analysis, Mcgraw -hill Co., 1968.
    40. S. S. Rao and V. Sundararajan, “In-Plane Flexural Vibration of Circular Rings” Journal of Applied Mechanics (ASME), Vol.36, p.620-625, September 1969
    41. J. P. Den Hartog, ”Vibration of Frames of Electrical Machines,” Journal of Applied Mechanics (ASME), Vol.50, APM-50-6, 1928
    42. J.S. Wu and L.K. Chiang, “A new approach for the free vibration analysis of arches with effects of shear deformation and rotary inertias considered,” J. of Sound and Vibration, 2003. (In press)
    43. T. Irie, G. Yamada and K. Tanaka, “Natural Frequencies of Out-of-Plane Vibration of Arcs,” Journal of Applied Mechanics, Vol. 49, 910-913, Transactions of the ASME, 1982.
    44. J.S. Wu and L.K. Chiang, Out-of-Plane Free Vibrations of Circular Curved Timoshenko Beams Using the Finite Curved Beam Elements, Technical report, Department of Naval Architecture and Marine Engineering, National Chen-Kung University, Tainan, Taiwan 701, Republic of China, 2003.
    45. R. Davis, R.D. Henshell and G.B. Warburton, “Discussion of ‘Effects of Transverse Shear and Rotatory Inertia on the Coupled Twist-Bending Vibrations of Circular Rings”, J. of Sound and Vibration, 21(2), 241-247, 1972.

    下載圖示 校內:立即公開
    校外:2004-06-18公開
    QR CODE